Step
*
of Lemma
eu-inner-pasch_wf
∀[e:EuclideanStructure]. ∀[a,b:Point]. ∀[c:{c:Point| ¬Colinear(a;b;c)} ]. ∀[p:{p:Point| a-p-c} ]. ∀[q:{q:Point| b_q_c} ]\000C.
  (eu-inner-pasch(e;a;b;c;p;q) ∈ Point)
BY
{ (ProveWfLemma THEN All (Unfolds ``eu-point eu-colinear eu-between eu-between-eq``)⋅ THEN DRecord 1 THEN Auto) }
Latex:
Latex:
\mforall{}[e:EuclideanStructure].  \mforall{}[a,b:Point].  \mforall{}[c:\{c:Point|  \mneg{}Colinear(a;b;c)\}  ].  \mforall{}[p:\{p:Point|  a-p-c\}  ].
\mforall{}[q:\{q:Point|  b\_q\_c\}  ].
    (eu-inner-pasch(e;a;b;c;p;q)  \mmember{}  Point)
By
Latex:
(ProveWfLemma
  THEN  All
  (Unfolds  ``eu-point  eu-colinear  eu-between  eu-between-eq``)\mcdot{}
  THEN  DRecord  1
  THEN  Auto)
Home
Index