Step
*
1
1
1
1
1
1
of Lemma
AX3
1. e : EuclideanParPlane@i'
2. l2 : Line@i
3. p1 : Point@i
4. l4 : n:{n:Line| p1 I n} × p1 # l2@i
5. l1 : Line@i
6. p : Point@i
7. m2 : n:{n:Line| p I n} × p # l1@i
8. p2 : Point@i
9. l : Line@i
10. n : Line@i
11. P4 : p2 I n@i
12. P5 : p2 # l@i
13. ¬((l \/ l2 ∨ n \/ l2) ∧ (∀x:{x:Point| x I l ∧ x I n} . x # l2))
14. l \/ l1
15. ∀x:{x:Point| x I l ∧ x I n} . x # l1
16. ∀l,m,n:Line. (l \/ m
⇒ (l \/ n ∨ m \/ n))
17. l \/ l2
18. l \/ n
19. ∃x:Point. ((x I fst(snd(<p2, l, n, P4, P5>)) ∧ x I fst(snd(snd(<p2, l, n, P4, P5>)))) ∧ x I fst(<l2, p1, l4>))
⊢ ∃P:P_point(e). ((¬P_point-line-sep(e;P;<l2, p1, l4>)) ∧ (¬P_point-line-sep(e;P;<l1, p, m2>)))
BY
{ ((ExRepD THEN Assert ⌜x I l2⌝⋅ THEN Auto) THEN Assert ⌜x # l1⌝⋅ THEN Auto) }
1
1. e : EuclideanParPlane@i'
2. l2 : Line@i
3. p1 : Point@i
4. l4 : n:{n:Line| p1 I n} × p1 # l2@i
5. l1 : Line@i
6. p : Point@i
7. m2 : n:{n:Line| p I n} × p # l1@i
8. p2 : Point@i
9. l : Line@i
10. n : Line@i
11. P4 : p2 I n@i
12. P5 : p2 # l@i
13. ¬((l \/ l2 ∨ n \/ l2) ∧ (∀x:{x:Point| x I l ∧ x I n} . x # l2))
14. l \/ l1
15. ∀x:{x:Point| x I l ∧ x I n} . x # l1
16. ∀l,m,n:Line. (l \/ m
⇒ (l \/ n ∨ m \/ n))
17. l \/ l2
18. l \/ n
19. x : Point
20. x I fst(snd(<p2, l, n, P4, P5>))
21. x I fst(snd(snd(<p2, l, n, P4, P5>)))
22. x I fst(<l2, p1, l4>)
23. x I l2
24. x # l1
⊢ ∃P:P_point(e). ((¬P_point-line-sep(e;P;<l2, p1, l4>)) ∧ (¬P_point-line-sep(e;P;<l1, p, m2>)))
Latex:
Latex:
1. e : EuclideanParPlane@i'
2. l2 : Line@i
3. p1 : Point@i
4. l4 : n:\{n:Line| p1 I n\} \mtimes{} p1 \# l2@i
5. l1 : Line@i
6. p : Point@i
7. m2 : n:\{n:Line| p I n\} \mtimes{} p \# l1@i
8. p2 : Point@i
9. l : Line@i
10. n : Line@i
11. P4 : p2 I n@i
12. P5 : p2 \# l@i
13. \mneg{}((l \mbackslash{}/ l2 \mvee{} n \mbackslash{}/ l2) \mwedge{} (\mforall{}x:\{x:Point| x I l \mwedge{} x I n\} . x \# l2))
14. l \mbackslash{}/ l1
15. \mforall{}x:\{x:Point| x I l \mwedge{} x I n\} . x \# l1
16. \mforall{}l,m,n:Line. (l \mbackslash{}/ m {}\mRightarrow{} (l \mbackslash{}/ n \mvee{} m \mbackslash{}/ n))
17. l \mbackslash{}/ l2
18. l \mbackslash{}/ n
19. \mexists{}x:Point. ((x I fst(snd(<p2, l, n, P4, P5>)) \mwedge{} x I fst(snd(snd(<p2, l, n, P4, P5>)))) \mwedge{} x I fst(\000C<l2, p1, l4>))
\mvdash{} \mexists{}P:P\_point(e). ((\mneg{}P\_point-line-sep(e;P;<l2, p1, l4>)) \mwedge{} (\mneg{}P\_point-line-sep(e;P;<l1, p, m2>)))
By
Latex:
((ExRepD THEN Assert \mkleeneopen{}x I l2\mkleeneclose{}\mcdot{} THEN Auto) THEN Assert \mkleeneopen{}x \# l1\mkleeneclose{}\mcdot{} THEN Auto)
Home
Index