Step
*
1
1
2
1
2
1
1
1
1
of Lemma
AX3
1. e : EuclideanParPlane@i'
2. l2 : Line@i
3. p1 : Point@i
4. l4 : n:{n:Line| p1 I n} × p1 # l2@i
5. l1 : Line@i
6. p : Point@i
7. m2 : n:{n:Line| p I n} × p # l1@i
8. p2 : Point@i
9. l : Line@i
10. n : Line@i
11. P4 : p2 I n@i
12. P5 : p2 # l@i
13. ¬((l \/ l2 ∨ n \/ l2) ∧ (∀x:{x:Point| x I l ∧ x I n} . x # l2))
14. n \/ l1
15. ∀x:{x:Point| x I l ∧ x I n} . x # l1
16. ∀l,m,n:Line. (l \/ m
⇒ (l \/ n ∨ m \/ n))
17. n \/ l2
18. l2 \/ l
19. l2 \/ l1
20. l1 \/ l2
⇐ (l1 # l2) ∧ (∃x:Point. (x I l1 ∧ x I l2))
21. p3 : Point
22. Colinear(p3;fst(l1);fst(snd(l1)))
23. p3 # fst(l2)fst(snd(l2))
24. x : Point
25. x I l1
26. x I l2
27. S1 : p3 I l1
28. S2 : p3 # l2
29. l2 \/ l2
30. ∀x:{x:Point| x I l2 ∧ x I l1} . x # l2
⊢ False
BY
{ (Assert ⌜l2 || l2⌝⋅ THEN EAuto 1) }
Latex:
Latex:
1. e : EuclideanParPlane@i'
2. l2 : Line@i
3. p1 : Point@i
4. l4 : n:\{n:Line| p1 I n\} \mtimes{} p1 \# l2@i
5. l1 : Line@i
6. p : Point@i
7. m2 : n:\{n:Line| p I n\} \mtimes{} p \# l1@i
8. p2 : Point@i
9. l : Line@i
10. n : Line@i
11. P4 : p2 I n@i
12. P5 : p2 \# l@i
13. \mneg{}((l \mbackslash{}/ l2 \mvee{} n \mbackslash{}/ l2) \mwedge{} (\mforall{}x:\{x:Point| x I l \mwedge{} x I n\} . x \# l2))
14. n \mbackslash{}/ l1
15. \mforall{}x:\{x:Point| x I l \mwedge{} x I n\} . x \# l1
16. \mforall{}l,m,n:Line. (l \mbackslash{}/ m {}\mRightarrow{} (l \mbackslash{}/ n \mvee{} m \mbackslash{}/ n))
17. n \mbackslash{}/ l2
18. l2 \mbackslash{}/ l
19. l2 \mbackslash{}/ l1
20. l1 \mbackslash{}/ l2 \mLeftarrow{}{} (l1 \# l2) \mwedge{} (\mexists{}x:Point. (x I l1 \mwedge{} x I l2))
21. p3 : Point
22. Colinear(p3;fst(l1);fst(snd(l1)))
23. p3 \# fst(l2)fst(snd(l2))
24. x : Point
25. x I l1
26. x I l2
27. S1 : p3 I l1
28. S2 : p3 \# l2
29. l2 \mbackslash{}/ l2
30. \mforall{}x:\{x:Point| x I l2 \mwedge{} x I l1\} . x \# l2
\mvdash{} False
By
Latex:
(Assert \mkleeneopen{}l2 || l2\mkleeneclose{}\mcdot{} THEN EAuto 1)
Home
Index