Nuprl Lemma : Dbet-to-between

e:EuclideanPlane. ∀a,b,c:Point.  ((∀A,B,C:Point.  (A BC  |AC| < |AB| |BC|))  Dbet(e;a;b;c)  B(abc))


Proof




Definitions occuring in Statement :  dist-bet: Dbet(g;a;b;c) geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-between: B(abc) geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane or: P ∨ Q not: ¬A false: False stable: Stable{P} iff: ⇐⇒ Q and: P ∧ Q basic-geometry-: BasicGeometry- rev_implies:  Q geo-strict-between: a-b-c uiff: uiff(P;Q) squash: T true: True

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.
    ((\mforall{}A,B,C:Point.    (A  \#  BC  {}\mRightarrow{}  |AC|  <  |AB|  +  |BC|))  {}\mRightarrow{}  Dbet(e;a;b;c)  {}\mRightarrow{}  B(abc))



Date html generated: 2020_05_20-AM-10_48_52
Last ObjectModification: 2020_01_13-PM-06_50_12

Theory : euclidean!plane!geometry


Home Index