Nuprl Lemma : Euclid-Prop5_1
∀e:EuclideanPlane. ∀a,b,c:Point.  ((ab ≅ ac ∧ Triangle(a;b;c)) 
⇒ abc ≅a acb)
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz
, 
geo-tri: Triangle(a;b;c)
, 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
geo-cong-angle: abc ≅a xyz
, 
geo-tri: Triangle(a;b;c)
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    ((ab  \mcong{}  ac  \mwedge{}  Triangle(a;b;c))  {}\mRightarrow{}  abc  \mcong{}\msuba{}  acb)
Date html generated:
2020_05_20-AM-10_03_29
Last ObjectModification:
2020_01_27-PM-10_00_11
Theory : euclidean!plane!geometry
Home
Index