Nuprl Lemma : Euclid-Prop5_1

e:EuclideanPlane. ∀a,b,c:Point.  ((ab ≅ ac ∧ Triangle(a;b;c))  abc ≅a acb)


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz geo-tri: Triangle(a;b;c) euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry geo-cong-angle: abc ≅a xyz geo-tri: Triangle(a;b;c) cand: c∧ B uiff: uiff(P;Q) exists: x:A. B[x]

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    ((ab  \mcong{}  ac  \mwedge{}  Triangle(a;b;c))  {}\mRightarrow{}  abc  \mcong{}\msuba{}  acb)



Date html generated: 2020_05_20-AM-10_03_29
Last ObjectModification: 2020_01_27-PM-10_00_11

Theory : euclidean!plane!geometry


Home Index