Nuprl Lemma : Euclid-Prop6-lemma

e:EuclideanPlane. ∀a,b,c:Point.
  (cab ≅a cba
   ab
   (∃x:Point
       (Colinear(c;a;x) ∧ ax ≅ bc ∧ (c leftof ab  leftof ab) ∧ (c leftof ba  leftof ba) ∧ Cong3(axb,bca))))


Proof




Definitions occuring in Statement :  geo-cong-tri: Cong3(abc,a'b'c') geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-congruent: ab ≅ cd geo-lsep: bc geo-left: leftof bc geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T sq_exists: x:A [B[x]] uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry and: P ∧ Q exists: x:A. B[x] cand: c∧ B uiff: uiff(P;Q) sq_stable: SqStable(P) oriented-plane: OrientedPlane squash: T geo-lsep: bc or: P ∨ Q geo-tri: Triangle(a;b;c) iff: ⇐⇒ Q rev_implies:  Q not: ¬A false: False

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.
    (cab  \mcong{}\msuba{}  cba
    {}\mRightarrow{}  c  \#  ab
    {}\mRightarrow{}  (\mexists{}x:Point
              (Colinear(c;a;x)
              \mwedge{}  ax  \mcong{}  bc
              \mwedge{}  (c  leftof  ab  {}\mRightarrow{}  x  leftof  ab)
              \mwedge{}  (c  leftof  ba  {}\mRightarrow{}  x  leftof  ba)
              \mwedge{}  Cong3(axb,bca))))



Date html generated: 2020_05_20-AM-10_06_21
Last ObjectModification: 2020_01_27-PM-10_00_00

Theory : euclidean!plane!geometry


Home Index