Step
*
1
1
of Lemma
Euclid-erect-2perp
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. a ≠ b
6. Colinear(a;b;c)
7. ¬((¬a_c_b) ∧ (¬a_b_c))
⊢ ∃d,d':Point. (d ≠ c ∧ d=c=d' ∧ Colinear(a;b;d) ∧ (∀x:Point. (x leftof ab
⇐⇒ x leftof dd')))
BY
{ (gSymmetricPoint ⌜a⌝ ⌜b⌝ `d'⋅
THEN (Assert d_a_c BY
(StableCases ⌜d_a_c⌝⋅
THEN Auto
THEN D -2
THEN D 7
THEN RepeatFor 2 ((D 0 THENA Auto))
THEN D -2
THEN Auto))
THEN (Assert c ≠ d BY
Auto)
THEN (gSymmetricPoint ⌜c⌝ ⌜d⌝ `d\''⋅ THEN (Assert out(b ad) BY (D 0 THEN Auto)))
THEN Assert ⌜out(d bd')⌝⋅) }
1
.....assertion.....
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. a ≠ b
6. Colinear(a;b;c)
7. ¬((¬a_c_b) ∧ (¬a_b_c))
8. d : Point
9. b=a=d
10. d_a_c
11. c ≠ d
12. d' : Point
13. d=c=d'
14. out(b ad)
⊢ out(d bd')
2
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. a ≠ b
6. Colinear(a;b;c)
7. ¬((¬a_c_b) ∧ (¬a_b_c))
8. d : Point
9. b=a=d
10. d_a_c
11. c ≠ d
12. d' : Point
13. d=c=d'
14. out(b ad)
15. out(d bd')
⊢ ∃d,d':Point. (d ≠ c ∧ d=c=d' ∧ Colinear(a;b;d) ∧ (∀x:Point. (x leftof ab
⇐⇒ x leftof dd')))
Latex:
Latex:
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. a \mneq{} b
6. Colinear(a;b;c)
7. \mneg{}((\mneg{}a\_c\_b) \mwedge{} (\mneg{}a\_b\_c))
\mvdash{} \mexists{}d,d':Point. (d \mneq{} c \mwedge{} d=c=d' \mwedge{} Colinear(a;b;d) \mwedge{} (\mforall{}x:Point. (x leftof ab \mLeftarrow{}{}\mRightarrow{} x leftof dd')))
By
Latex:
(gSymmetricPoint \mkleeneopen{}a\mkleeneclose{} \mkleeneopen{}b\mkleeneclose{} `d'\mcdot{}
THEN (Assert d\_a\_c BY
(StableCases \mkleeneopen{}d\_a\_c\mkleeneclose{}\mcdot{}
THEN Auto
THEN D -2
THEN D 7
THEN RepeatFor 2 ((D 0 THENA Auto))
THEN D -2
THEN Auto))
THEN (Assert c \mneq{} d BY
Auto)
THEN (gSymmetricPoint \mkleeneopen{}c\mkleeneclose{} \mkleeneopen{}d\mkleeneclose{} `d\mbackslash{}''\mcdot{} THEN (Assert out(b ad) BY (D 0 THEN Auto)))
THEN Assert \mkleeneopen{}out(d bd')\mkleeneclose{}\mcdot{})
Home
Index