Nuprl Lemma : basic-geo-cong-preserves-gt-prim

e:GeometryPrimitives. (BasicGeometryAxioms(e)  (∀a,b,c,d,x,y:Point.  (ab ≅ cd  cd>xy  ab>xy)))


Proof




Definitions occuring in Statement :  basic-geo-axioms: BasicGeometryAxioms(g) geo-congruent: ab ≅ cd geo-gt-prim: ab>cd geo-primitives: GeometryPrimitives geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q basic-geo-axioms: BasicGeometryAxioms(g) and: P ∧ Q cand: c∧ B not: ¬A geo-congruent: ab ≅ cd geo-length-sep: ab cd) or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] prop: false: False geo-ge: ab ≥ cd guard: {T}

Latex:
\mforall{}e:GeometryPrimitives
    (BasicGeometryAxioms(e)  {}\mRightarrow{}  (\mforall{}a,b,c,d,x,y:Point.    (ab  \mcong{}  cd  {}\mRightarrow{}  cd>xy  {}\mRightarrow{}  ab>xy)))



Date html generated: 2020_05_20-AM-09_41_30
Last ObjectModification: 2020_01_27-PM-10_35_38

Theory : euclidean!plane!geometry


Home Index