Step
*
1
2
1
2
of Lemma
common-P_point-intersecting-P_lines2
1. e : EuclideanParPlane
2. p : Point
3. l : Line
4. n : Line
5. P4 : p I n
6. P5 : p # l
7. l2 : Line
8. L3 : p:Point × n:{n:Line| p I n} × p # l2
9. l1 : Line
10. L2 : p:Point × n:{n:Line| p I n} × p # l1
11. ¬((l \/ l2 ∨ n \/ l2) ∧ (∀x:{x:Point| x I l ∧ x I n} . x # l2))
12. ¬((l \/ l1 ∨ n \/ l1) ∧ (∀x:{x:Point| x I l ∧ x I n} . x # l1))
13. l2 \/ l1
14. ∀l,m,n:Line. (l \/ m
⇒ (l \/ n ∨ m \/ n))
15. l1 \/ l
16. l1 \/ n
17. l1 \/ l
⇐ (l1 # l) ∧ (∃x:Point. (x I l1 ∧ x I l))
18. (l1 # l)
19. x : Point
20. x I l1
21. x I l
22. x I l
23. x I n
⊢ x I l2
BY
{ (Assert ⌜¬x # l2⌝⋅ THENA (D 0 THEN Auto)) }
1
1. e : EuclideanParPlane
2. p : Point
3. l : Line
4. n : Line
5. P4 : p I n
6. P5 : p # l
7. l2 : Line
8. L3 : p:Point × n:{n:Line| p I n} × p # l2
9. l1 : Line
10. L2 : p:Point × n:{n:Line| p I n} × p # l1
11. ¬((l \/ l2 ∨ n \/ l2) ∧ (∀x:{x:Point| x I l ∧ x I n} . x # l2))
12. ¬((l \/ l1 ∨ n \/ l1) ∧ (∀x:{x:Point| x I l ∧ x I n} . x # l1))
13. l2 \/ l1
14. ∀l,m,n:Line. (l \/ m
⇒ (l \/ n ∨ m \/ n))
15. l1 \/ l
16. l1 \/ n
17. l1 \/ l
⇐ (l1 # l) ∧ (∃x:Point. (x I l1 ∧ x I l))
18. (l1 # l)
19. x : Point
20. x I l1
21. x I l
22. x I l
23. x I n
24. x # l2
⊢ False
2
1. e : EuclideanParPlane
2. p : Point
3. l : Line
4. n : Line
5. P4 : p I n
6. P5 : p # l
7. l2 : Line
8. L3 : p:Point × n:{n:Line| p I n} × p # l2
9. l1 : Line
10. L2 : p:Point × n:{n:Line| p I n} × p # l1
11. ¬((l \/ l2 ∨ n \/ l2) ∧ (∀x:{x:Point| x I l ∧ x I n} . x # l2))
12. ¬((l \/ l1 ∨ n \/ l1) ∧ (∀x:{x:Point| x I l ∧ x I n} . x # l1))
13. l2 \/ l1
14. ∀l,m,n:Line. (l \/ m
⇒ (l \/ n ∨ m \/ n))
15. l1 \/ l
16. l1 \/ n
17. l1 \/ l
⇐ (l1 # l) ∧ (∃x:Point. (x I l1 ∧ x I l))
18. (l1 # l)
19. x : Point
20. x I l1
21. x I l
22. x I l
23. x I n
24. ¬x # l2
⊢ x I l2
Latex:
Latex:
1. e : EuclideanParPlane
2. p : Point
3. l : Line
4. n : Line
5. P4 : p I n
6. P5 : p \# l
7. l2 : Line
8. L3 : p:Point \mtimes{} n:\{n:Line| p I n\} \mtimes{} p \# l2
9. l1 : Line
10. L2 : p:Point \mtimes{} n:\{n:Line| p I n\} \mtimes{} p \# l1
11. \mneg{}((l \mbackslash{}/ l2 \mvee{} n \mbackslash{}/ l2) \mwedge{} (\mforall{}x:\{x:Point| x I l \mwedge{} x I n\} . x \# l2))
12. \mneg{}((l \mbackslash{}/ l1 \mvee{} n \mbackslash{}/ l1) \mwedge{} (\mforall{}x:\{x:Point| x I l \mwedge{} x I n\} . x \# l1))
13. l2 \mbackslash{}/ l1
14. \mforall{}l,m,n:Line. (l \mbackslash{}/ m {}\mRightarrow{} (l \mbackslash{}/ n \mvee{} m \mbackslash{}/ n))
15. l1 \mbackslash{}/ l
16. l1 \mbackslash{}/ n
17. l1 \mbackslash{}/ l \mLeftarrow{}{} (l1 \# l) \mwedge{} (\mexists{}x:Point. (x I l1 \mwedge{} x I l))
18. (l1 \# l)
19. x : Point
20. x I l1
21. x I l
22. x I l
23. x I n
\mvdash{} x I l2
By
Latex:
(Assert \mkleeneopen{}\mneg{}x \# l2\mkleeneclose{}\mcdot{} THENA (D 0 THEN Auto))
Home
Index