Step * 1 1 of Lemma euclidean-plane-axioms


1. EuclideanPlane
2. BasicGeometryAxioms(g) ∧ (∀a,b,c:Point.  (a bc  Colinear(a;b;c))))
3. SqStable(geo-left-axioms(g))
4. (∀a:Point. a ≡ a) ∧ (∀a,b:Point.  ab ≅ ba) ∧ (∀a,b,c:Point.  (a ≡  ac ≅ bc))
5. ∀a,b:Point.  (a  a)
⊢ ((∀a,b:Point.  (a  a))
  ∧ (∀a:Point. a))
  ∧ (∀a,b,x,y:Point.  (a ≡  B(xay)  B(xby)))
  ∧ ((∀a,b,c:Point.  (a ≡  ac ≅ cb)) ∧ (∀a,b,c:Point.  (a ≡  ac ≅ bc)))
  ∧ (∀a,b,c,d:Point.  (cd ≥ ab   d))
  ∧ (∀a,b,c:Point.  (a ≡  B(abc)))
  ∧ (∀a,b,c:Point.  (B(abc)  B(cba)))
  ∧ (∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc)))
  ∧ (∀a,b:Point.  ab ≅ ba)
  ∧ (∀a,b,p,q,r,s:Point.  (ab ≅ pq  ab ≅ rs  pq ≅ rs))
  ∧ (∀a,b:Point.  aa ≅ bb)
  ∧ (∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)))
∧ (∀a,b,c:Point.  bc ⇐⇒ Colinear(a;b;c)))
∧ (∀a,b,c:Point.  (a leftof bc  leftof ca))
∧ (∀a,b,c:Point.  (a leftof bc  c))
∧ (∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  ab))
∧ (∀a,b,c,y:Point.  (a bc   Colinear(y;a;b)  bc))
BY
(RepeatFor (D 2) THEN SplitAndHyps THEN SplitAndConcl THEN Try (Hypothesis) THEN Auto) }

1
1. EuclideanPlane
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e,f:Point.  (ab>cd  cd ≥ ef  ab>ef)
6. ∀a,b,c,d,e,f:Point.  (ab ≥ cd  cd>ef  ab>ef)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. ∀a,b,c:Point.  (a bc  Colinear(a;b;c)))
16. SqStable(geo-left-axioms(g))
17. ∀a:Point. a ≡ a
18. ∀a,b:Point.  ab ≅ ba
19. ∀a,b,c:Point.  (a ≡  ac ≅ bc)
20. ∀a,b:Point.  (a  a)
21. Point
22. Point
23. Point
24. Point
25. a ≡ b
26. B(xay)
⊢ B(xby)

2
1. EuclideanPlane
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e,f:Point.  (ab>cd  cd ≥ ef  ab>ef)
6. ∀a,b,c,d,e,f:Point.  (ab ≥ cd  cd>ef  ab>ef)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. ∀a,b,c:Point.  (a bc  Colinear(a;b;c)))
16. SqStable(geo-left-axioms(g))
17. ∀a:Point. a ≡ a
18. ∀a,b:Point.  ab ≅ ba
19. ∀a,b,c:Point.  (a ≡  ac ≅ bc)
20. ∀a,b:Point.  (a  a)
21. Point
22. Point
23. Point
24. a ≡ b
⊢ ac ≅ cb

3
1. EuclideanPlane
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e,f:Point.  (ab>cd  cd ≥ ef  ab>ef)
6. ∀a,b,c,d,e,f:Point.  (ab ≥ cd  cd>ef  ab>ef)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. ∀a,b,c:Point.  (a bc  Colinear(a;b;c)))
16. SqStable(geo-left-axioms(g))
17. ∀a:Point. a ≡ a
18. ∀a,b:Point.  ab ≅ ba
19. ∀a,b,c:Point.  (a ≡  ac ≅ bc)
20. ∀a,b:Point.  (a  a)
21. Point
22. Point
23. Point
24. Point
25. cd ≥ ab
26. b
⊢ d

4
1. EuclideanPlane
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e,f:Point.  (ab>cd  cd ≥ ef  ab>ef)
6. ∀a,b,c,d,e,f:Point.  (ab ≥ cd  cd>ef  ab>ef)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. ∀a,b,c:Point.  (a bc  Colinear(a;b;c)))
16. SqStable(geo-left-axioms(g))
17. ∀a:Point. a ≡ a
18. ∀a,b:Point.  ab ≅ ba
19. ∀a,b,c:Point.  (a ≡  ac ≅ bc)
20. ∀a,b:Point.  (a  a)
21. Point
22. Point
23. Point
24. a ≡ b
⊢ B(abc)

5
1. EuclideanPlane
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e,f:Point.  (ab>cd  cd ≥ ef  ab>ef)
6. ∀a,b,c,d,e,f:Point.  (ab ≥ cd  cd>ef  ab>ef)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. ∀a,b,c:Point.  (a bc  Colinear(a;b;c)))
16. SqStable(geo-left-axioms(g))
17. ∀a:Point. a ≡ a
18. ∀a,b:Point.  ab ≅ ba
19. ∀a,b,c:Point.  (a ≡  ac ≅ bc)
20. ∀a,b:Point.  (a  a)
21. Point
22. Point
23. Point
24. B(abc)
⊢ B(cba)

6
1. EuclideanPlane
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e,f:Point.  (ab>cd  cd ≥ ef  ab>ef)
6. ∀a,b,c,d,e,f:Point.  (ab ≥ cd  cd>ef  ab>ef)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. ∀a,b,c:Point.  (a bc  Colinear(a;b;c)))
16. SqStable(geo-left-axioms(g))
17. ∀a:Point. a ≡ a
18. ∀a,b:Point.  ab ≅ ba
19. ∀a,b,c:Point.  (a ≡  ac ≅ bc)
20. ∀a,b:Point.  (a  a)
21. Point
22. Point
23. Point
24. Point
25. Point
26. Point
27. ab ≅ pq
28. ab ≅ rs
⊢ pq ≅ rs

7
1. EuclideanPlane
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e,f:Point.  (ab>cd  cd ≥ ef  ab>ef)
6. ∀a,b,c,d,e,f:Point.  (ab ≥ cd  cd>ef  ab>ef)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. ∀a,b,c:Point.  (a bc  Colinear(a;b;c)))
16. SqStable(geo-left-axioms(g))
17. ∀a:Point. a ≡ a
18. ∀a,b:Point.  ab ≅ ba
19. ∀a,b,c:Point.  (a ≡  ac ≅ bc)
20. ∀a,b:Point.  (a  a)
21. Point
22. Point
⊢ aa ≅ bb

8
1. EuclideanPlane
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e,f:Point.  (ab>cd  cd ≥ ef  ab>ef)
6. ∀a,b,c,d,e,f:Point.  (ab ≥ cd  cd>ef  ab>ef)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. ∀a,b,c:Point.  (a bc  Colinear(a;b;c)))
16. SqStable(geo-left-axioms(g))
17. ∀a:Point. a ≡ a
18. ∀a,b:Point.  ab ≅ ba
19. ∀a,b,c:Point.  (a ≡  ac ≅ bc)
20. ∀a,b:Point.  (a  a)
21. Point
22. Point
23. Point
24. Point
25. Point
26. leftof ab
27. leftof ab
28. B(xzy)
⊢ ab


Latex:


Latex:

1.  g  :  EuclideanPlane
2.  BasicGeometryAxioms(g)  \mwedge{}  (\mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (\mneg{}Colinear(a;b;c))))
3.  SqStable(geo-left-axioms(g))
4.  (\mforall{}a:Point.  a  \mequiv{}  a)  \mwedge{}  (\mforall{}a,b:Point.    ab  \mcong{}  ba)  \mwedge{}  (\mforall{}a,b,c:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  ac  \mcong{}  bc))
5.  \mforall{}a,b:Point.    (a  \#  b  {}\mRightarrow{}  b  \#  a)
\mvdash{}  ((\mforall{}a,b:Point.    (a  \#  b  {}\mRightarrow{}  b  \#  a))
    \mwedge{}  (\mforall{}a:Point.  (\mneg{}a  \#  a))
    \mwedge{}  (\mforall{}a,b,x,y:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  B(xay)  {}\mRightarrow{}  B(xby)))
    \mwedge{}  ((\mforall{}a,b,c:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  ac  \mcong{}  cb))  \mwedge{}  (\mforall{}a,b,c:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  ac  \mcong{}  bc)))
    \mwedge{}  (\mforall{}a,b,c,d:Point.    (cd  \mgeq{}  ab  {}\mRightarrow{}  a  \#  b  {}\mRightarrow{}  c  \#  d))
    \mwedge{}  (\mforall{}a,b,c:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  B(abc)))
    \mwedge{}  (\mforall{}a,b,c:Point.    (B(abc)  {}\mRightarrow{}  B(cba)))
    \mwedge{}  (\mforall{}a,b,c,d:Point.    (B(abd)  {}\mRightarrow{}  B(bcd)  {}\mRightarrow{}  B(abc)))
    \mwedge{}  (\mforall{}a,b:Point.    ab  \mcong{}  ba)
    \mwedge{}  (\mforall{}a,b,p,q,r,s:Point.    (ab  \mcong{}  pq  {}\mRightarrow{}  ab  \mcong{}  rs  {}\mRightarrow{}  pq  \mcong{}  rs))
    \mwedge{}  (\mforall{}a,b:Point.    aa  \mcong{}  bb)
    \mwedge{}  (\mforall{}a,b,c,d,A,B,C,D:Point.
              (a  \#  b  {}\mRightarrow{}  B(abc)  {}\mRightarrow{}  B(ABC)  {}\mRightarrow{}  ab  \mcong{}  AB  {}\mRightarrow{}  bc  \mcong{}  BC  {}\mRightarrow{}  ad  \mcong{}  AD  {}\mRightarrow{}  bd  \mcong{}  BD  {}\mRightarrow{}  cd  \mcong{}  CD)))
\mwedge{}  (\mforall{}a,b,c:Point.    (\mneg{}a  \#  bc  \mLeftarrow{}{}\mRightarrow{}  Colinear(a;b;c)))
\mwedge{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  leftof  ca))
\mwedge{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  \#  c))
\mwedge{}  (\mforall{}a,b,x,y,z:Point.    (x  leftof  ab  {}\mRightarrow{}  y  leftof  ab  {}\mRightarrow{}  B(xzy)  {}\mRightarrow{}  z  \#  ab))
\mwedge{}  (\mforall{}a,b,c,y:Point.    (a  \#  bc  {}\mRightarrow{}  y  \#  b  {}\mRightarrow{}  Colinear(y;a;b)  {}\mRightarrow{}  y  \#  bc))


By


Latex:
(RepeatFor  2  (D  2)  THEN  SplitAndHyps  THEN  SplitAndConcl  THEN  Try  (Hypothesis)  THEN  Auto)




Home Index