Step
*
1
1
1
2
1
of Lemma
geo-Aax4
.....antecedent.....
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. x1 : Point
6. y1 : Point
7. l2 : x1 ≠ y1
8. x : Point
9. y : Point
10. m2 : x ≠ y
11. a ≠ b
12. a I <x1, y1, l2>
13. b I <x1, y1, l2>
14. a I <x, y, m2>
15. c I <x, y, m2>
16. c # x1y1
17. x1 ≠ a
18. c # ax1
⊢ Colinear(x1;a;b)
BY
{ (Auto
THEN (Unfold `geo-incident` 12 THEN Unfold `geo-incident` 13)
THEN ((InstHyp [⌜<x1, y1, l2>⌝] (12)⋅ THENA Auto) THEN (InstHyp [⌜<x1, y1, l2>⌝] (13)⋅ THENA Auto))
THEN All
Reduce⋅
THEN Auto) }
Latex:
Latex:
.....antecedent.....
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. x1 : Point
6. y1 : Point
7. l2 : x1 \mneq{} y1
8. x : Point
9. y : Point
10. m2 : x \mneq{} y
11. a \mneq{} b
12. a I <x1, y1, l2>
13. b I <x1, y1, l2>
14. a I <x, y, m2>
15. c I <x, y, m2>
16. c \# x1y1
17. x1 \mneq{} a
18. c \# ax1
\mvdash{} Colinear(x1;a;b)
By
Latex:
(Auto
THEN (Unfold `geo-incident` 12 THEN Unfold `geo-incident` 13)
THEN ((InstHyp [\mkleeneopen{}<x1, y1, l2>\mkleeneclose{}] (12)\mcdot{} THENA Auto) THEN (InstHyp [\mkleeneopen{}<x1, y1, l2>\mkleeneclose{}] (13)\mcdot{} THENA Auto))
THEN All
Reduce\mcdot{}
THEN Auto)
Home
Index