Step
*
1
2
2
1
1
1
of Lemma
geo-Aax4
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. x1 : Point
6. y1 : Point
7. l2 : x1 ≠ y1
8. x : Point
9. y : Point
10. m2 : x ≠ y
11. a ≠ b
12. a I <x1, y1, l2>
13. b I <x1, y1, l2>
14. ∀l:Line. ((l = <x, y, m2> ∈ LINE)
⇒ Colinear(a;fst(l);fst(snd(l))))
15. ∀l:Line. ((l = <x, y, m2> ∈ LINE)
⇒ Colinear(c;fst(l);fst(snd(l))))
16. c # x1y1
17. c # ab
18. x ≠ a
19. b # ca
⊢ Colinear(c;a;x)
BY
{ (((InstHyp [⌜<x, y, m2>⌝] (15)⋅ THENA Auto) THEN (InstHyp [⌜<x, y, m2>⌝] (14)⋅ THENA Auto))
THEN All
Reduce⋅
THEN Auto) }
Latex:
Latex:
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. x1 : Point
6. y1 : Point
7. l2 : x1 \mneq{} y1
8. x : Point
9. y : Point
10. m2 : x \mneq{} y
11. a \mneq{} b
12. a I <x1, y1, l2>
13. b I <x1, y1, l2>
14. \mforall{}l:Line. ((l = <x, y, m2>) {}\mRightarrow{} Colinear(a;fst(l);fst(snd(l))))
15. \mforall{}l:Line. ((l = <x, y, m2>) {}\mRightarrow{} Colinear(c;fst(l);fst(snd(l))))
16. c \# x1y1
17. c \# ab
18. x \mneq{} a
19. b \# ca
\mvdash{} Colinear(c;a;x)
By
Latex:
(((InstHyp [\mkleeneopen{}<x, y, m2>\mkleeneclose{}] (15)\mcdot{} THENA Auto) THEN (InstHyp [\mkleeneopen{}<x, y, m2>\mkleeneclose{}] (14)\mcdot{} THENA Auto))
THEN All
Reduce\mcdot{}
THEN Auto)
Home
Index