Nuprl Lemma : geo-CC-lsep

g:EuclideanPlane. ∀a,b,c,d:Point.
  (a  (∃p,q:Point. ((ab ≅ ap ∧ cd>cp) ∧ cd ≅ cq ∧ ab>aq))  (∃z:Point. ((az ≅ ab ∧ cz ≅ cd) ∧ ac)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-lsep: bc geo-sep: b geo-gt-prim: ab>cd geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] and: P ∧ Q cand: c∧ B geo-lsep: bc or: P ∨ Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    (a  \#  c
    {}\mRightarrow{}  (\mexists{}p,q:Point.  ((ab  \mcong{}  ap  \mwedge{}  cd>cp)  \mwedge{}  cd  \mcong{}  cq  \mwedge{}  ab>aq))
    {}\mRightarrow{}  (\mexists{}z:Point.  ((az  \mcong{}  ab  \mwedge{}  cz  \mcong{}  cd)  \mwedge{}  z  \#  ac)))



Date html generated: 2020_05_20-AM-09_47_08
Last ObjectModification: 2019_12_06-PM-03_07_48

Theory : euclidean!plane!geometry


Home Index