Nuprl Lemma : geo-colinear-five-segment

e:BasicGeometry
  ∀[a,b,c,d,A,B,C,D:Point].
    (cd ≅ CD) supposing (bd ≅ BD and ad ≅ AD and bc ≅ BC and ab ≅ AB and ac ≅ AC and Colinear(a;b;c) and b)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-congruent: ab ≅ cd geo-sep: b geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- guard: {T} implies:  Q prop: geo-congruent: ab ≅ cd not: ¬A false: False uiff: uiff(P;Q) and: P ∧ Q

Latex:
\mforall{}e:BasicGeometry
    \mforall{}[a,b,c,d,A,B,C,D:Point].
        (cd  \mcong{}  CD)  supposing 
              (bd  \mcong{}  BD  and 
              ad  \mcong{}  AD  and 
              bc  \mcong{}  BC  and 
              ab  \mcong{}  AB  and 
              ac  \mcong{}  AC  and 
              Colinear(a;b;c)  and 
              a  \#  b)



Date html generated: 2020_05_20-AM-09_52_32
Last ObjectModification: 2019_12_20-PM-08_45_04

Theory : euclidean!plane!geometry


Home Index