Step
*
1
of Lemma
geo-colinear-sep-cases
1. e : BasicGeometry
2. a : Point
3. b : Point
4. c : Point
5. a ≠ b
6. Colinear(a;b;c)
7. a ≠ c
⊢ (¬((¬a_c_b) ∧ (¬a_b_c))) ∨ (¬((¬b_c_a) ∧ (¬b_a_c)))
BY
{ ((gSymmetricPoint ⌜a⌝ ⌜b⌝ `b\''⋅ THEN D -1)
THEN (gProlong ⌜b'⌝ ⌜a⌝ `x' ⌜a⌝ ⌜c⌝⋅ THENA Auto)
THEN (gProlong ⌜b⌝ ⌜a⌝ `y' ⌜a⌝ ⌜c⌝⋅ THENA Auto)) }
1
1. e : BasicGeometry
2. a : Point
3. b : Point
4. c : Point
5. a ≠ b
6. Colinear(a;b;c)
7. a ≠ c
8. b' : Point
9. b_a_b'
10. ba ≅ ab'
11. x : Point
12. b'_a_x ∧ ax ≅ ac
13. y : Point
14. b_a_y ∧ ay ≅ ac
⊢ (¬((¬a_c_b) ∧ (¬a_b_c))) ∨ (¬((¬b_c_a) ∧ (¬b_a_c)))
Latex:
Latex:
1. e : BasicGeometry
2. a : Point
3. b : Point
4. c : Point
5. a \mneq{} b
6. Colinear(a;b;c)
7. a \mneq{} c
\mvdash{} (\mneg{}((\mneg{}a\_c\_b) \mwedge{} (\mneg{}a\_b\_c))) \mvee{} (\mneg{}((\mneg{}b\_c\_a) \mwedge{} (\mneg{}b\_a\_c)))
By
Latex:
((gSymmetricPoint \mkleeneopen{}a\mkleeneclose{} \mkleeneopen{}b\mkleeneclose{} `b\mbackslash{}''\mcdot{} THEN D -1)
THEN (gProlong \mkleeneopen{}b'\mkleeneclose{} \mkleeneopen{}a\mkleeneclose{} `x' \mkleeneopen{}a\mkleeneclose{} \mkleeneopen{}c\mkleeneclose{}\mcdot{} THENA Auto)
THEN (gProlong \mkleeneopen{}b\mkleeneclose{} \mkleeneopen{}a\mkleeneclose{} `y' \mkleeneopen{}a\mkleeneclose{} \mkleeneopen{}c\mkleeneclose{}\mcdot{} THENA Auto))
Home
Index