Nuprl Lemma : geo-cong-angle-symmetry

e:BasicGeometry. ∀a,b,c,x,y,z:Point.
  (xyz ≅a abc  {zyx ≅a abc ∧ xyz ≅a cba ∧ zyx ≅a cba ∧ abc ≅a xyz ∧ cba ≅a xyz ∧ abc ≅a zyx ∧ cba ≅a zyx})


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-point: Point guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-cong-angle: abc ≅a xyz and: P ∧ Q cand: c∧ B member: t ∈ T basic-geometry: BasicGeometry guard: {T} uall: [x:A]. B[x] prop: subtype_rel: A ⊆B uimplies: supposing a

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.
    (xyz  \mcong{}\msuba{}  abc
    {}\mRightarrow{}  \{zyx  \mcong{}\msuba{}  abc  \mwedge{}  xyz  \mcong{}\msuba{}  cba  \mwedge{}  zyx  \mcong{}\msuba{}  cba  \mwedge{}  abc  \mcong{}\msuba{}  xyz  \mwedge{}  cba  \mcong{}\msuba{}  xyz  \mwedge{}  abc  \mcong{}\msuba{}  zyx  \mwedge{}  cba  \mcong{}\msuba{}  zyx\})



Date html generated: 2020_05_20-AM-09_56_58
Last ObjectModification: 2020_01_14-AM-10_29_29

Theory : euclidean!plane!geometry


Home Index