Nuprl Lemma : geo-cong-angle_inversion
∀e:BasicGeometry. ∀a,b,c:Point.  ((a # b ∧ c # b) 
⇒ abc ≅a cba)
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz
, 
basic-geometry: BasicGeometry
, 
geo-sep: a # b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
geo-cong-angle: abc ≅a xyz
, 
basic-geometry: BasicGeometry
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
true: True
, 
exists: ∃x:A. B[x]
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:Point.    ((a  \#  b  \mwedge{}  c  \#  b)  {}\mRightarrow{}  abc  \mcong{}\msuba{}  cba)
Date html generated:
2020_05_20-AM-09_57_06
Last ObjectModification:
2020_01_27-PM-10_01_12
Theory : euclidean!plane!geometry
Home
Index