Nuprl Lemma : geo-cong-preserves-gt-prim

e:EuclideanPlane. ∀a,b,c,d,x,y:Point.  (ab ≅ cd  cd>xy  ab>xy)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-gt-prim: ab>cd geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] euclidean-plane: EuclideanPlane member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T basic-geo-axioms: BasicGeometryAxioms(g) and: P ∧ Q cand: c∧ B not: ¬A geo-congruent: ab ≅ cd geo-length-sep: ab cd) or: P ∨ Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: false: False geo-ge: ab ≥ cd guard: {T} uimplies: supposing a

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,x,y:Point.    (ab  \mcong{}  cd  {}\mRightarrow{}  cd>xy  {}\mRightarrow{}  ab>xy)



Date html generated: 2020_05_20-AM-09_44_40
Last ObjectModification: 2020_01_27-PM-11_03_26

Theory : euclidean!plane!geometry


Home Index