Nuprl Lemma : geo-congruent-between-exists
∀e:BasicGeometry. ∀a,b,c,a',c':Point.
  (a # b ⇒ (∃b':Point. (B(a'b'c') ∧ ab ≅ a'b' ∧ bc ≅ b'c')) supposing (B(abc) and ac ≅ a'c'))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
geo-congruent: ab ≅ cd, 
geo-between: B(abc), 
geo-sep: a # b, 
geo-point: Point, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
prop: ℙ, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
geo-between: B(abc), 
false: False, 
not: ¬A, 
geo-congruent: ab ≅ cd, 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
basic-geometry: BasicGeometry, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
basic-geometry-: BasicGeometry-, 
euclidean-plane: EuclideanPlane, 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',c':Point.
    (a  \#  b  {}\mRightarrow{}  (\mexists{}b':Point.  (B(a'b'c')  \mwedge{}  ab  \mcong{}  a'b'  \mwedge{}  bc  \mcong{}  b'c'))  supposing  (B(abc)  and  ac  \mcong{}  a'c'))
Date html generated:
2020_05_20-AM-09_52_16
Last ObjectModification:
2019_12_20-PM-08_45_20
Theory : euclidean!plane!geometry
Home
Index