Nuprl Lemma : geo-congruent-between-exists

e:BasicGeometry. ∀a,b,c,a',c':Point.
  (a  (∃b':Point. (B(a'b'c') ∧ ab ≅ a'b' ∧ bc ≅ b'c')) supposing (B(abc) and ac ≅ a'c'))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-between: B(abc) geo-sep: b geo-point: Point uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  prop: guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q geo-between: B(abc) false: False not: ¬A geo-congruent: ab ≅ cd member: t ∈ T uimplies: supposing a implies:  Q all: x:A. B[x] basic-geometry: BasicGeometry exists: x:A. B[x] cand: c∧ B basic-geometry-: BasicGeometry- euclidean-plane: EuclideanPlane uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',c':Point.
    (a  \#  b  {}\mRightarrow{}  (\mexists{}b':Point.  (B(a'b'c')  \mwedge{}  ab  \mcong{}  a'b'  \mwedge{}  bc  \mcong{}  b'c'))  supposing  (B(abc)  and  ac  \mcong{}  a'c'))



Date html generated: 2020_05_20-AM-09_52_16
Last ObjectModification: 2019_12_20-PM-08_45_20

Theory : euclidean!plane!geometry


Home Index