Nuprl Lemma : geo-congruent-between-exists
∀e:BasicGeometry. ∀a,b,c,a',c':Point.
  (a # b 
⇒ (∃b':Point. (B(a'b'c') ∧ ab ≅ a'b' ∧ bc ≅ b'c')) supposing (B(abc) and ac ≅ a'c'))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-congruent: ab ≅ cd
, 
geo-between: B(abc)
, 
geo-sep: a # b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
prop: ℙ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
geo-between: B(abc)
, 
false: False
, 
not: ¬A
, 
geo-congruent: ab ≅ cd
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
basic-geometry: BasicGeometry
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
basic-geometry-: BasicGeometry-
, 
euclidean-plane: EuclideanPlane
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',c':Point.
    (a  \#  b  {}\mRightarrow{}  (\mexists{}b':Point.  (B(a'b'c')  \mwedge{}  ab  \mcong{}  a'b'  \mwedge{}  bc  \mcong{}  b'c'))  supposing  (B(abc)  and  ac  \mcong{}  a'c'))
Date html generated:
2020_05_20-AM-09_52_16
Last ObjectModification:
2019_12_20-PM-08_45_20
Theory : euclidean!plane!geometry
Home
Index