Step * of Lemma geo-congruent-flip

No Annotations
e:GeometryPrimitives. (BasicGeometryAxioms(e)  (∀[a,b:Point].  ab ≅ ba))
BY
(((((Auto THEN 2) THEN SplitAndHyps) THEN 0) THENA Auto) THEN -1) }

1
1. GeometryPrimitives
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e@0,f:Point.  (ab>cd  cd ≥ e@0f  ab>e@0f)
6. ∀a,b,c,d,e@0,f:Point.  (ab ≥ cd  cd>e@0f  ab>e@0f)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. Point
16. Point
17. ba>ab
⊢ False

2
1. GeometryPrimitives
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e@0,f:Point.  (ab>cd  cd ≥ e@0f  ab>e@0f)
6. ∀a,b,c,d,e@0,f:Point.  (ab ≥ cd  cd>e@0f  ab>e@0f)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. Point
16. Point
17. ab>ba
⊢ False


Latex:


Latex:
No  Annotations
\mforall{}e:GeometryPrimitives.  (BasicGeometryAxioms(e)  {}\mRightarrow{}  (\mforall{}[a,b:Point].    ab  \mcong{}  ba))


By


Latex:
(((((Auto  THEN  D  2)  THEN  SplitAndHyps)  THEN  D  0)  THENA  Auto)  THEN  D  -1)




Home Index