Nuprl Lemma : geo-inner-five-segment

e:EuclideanPlane
  ∀[a,b,c,d,A,B,C,D:Point].  (bd ≅ BD) supposing (cd ≅ CD and ad ≅ AD and bc ≅ BC and ac ≅ AC and B(ABC) and B(abc))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-between: B(abc) geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a euclidean-plane: EuclideanPlane stable: Stable{P} not: ¬A implies:  Q subtype_rel: A ⊆B prop: false: False geo-congruent: ab ≅ cd guard: {T} or: P ∨ Q and: P ∧ Q geo-eq: a ≡ b iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] basic-geometry-: BasicGeometry-

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,d,A,B,C,D:Point].
        (bd  \mcong{}  BD)  supposing  (cd  \mcong{}  CD  and  ad  \mcong{}  AD  and  bc  \mcong{}  BC  and  ac  \mcong{}  AC  and  B(ABC)  and  B(abc))



Date html generated: 2020_05_20-AM-09_49_34
Last ObjectModification: 2020_01_27-PM-10_03_31

Theory : euclidean!plane!geometry


Home Index