Nuprl Lemma : geo-lsep_functionality

e:EuclideanPlane. ∀a1,a2,b1,b2,c1,c2:Point.  (a1 ≡ a2  b1 ≡ b2  c1 ≡ c2  (a1 b1c1 ⇐⇒ a2 b2c2))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-eq: a ≡ b geo-lsep: bc geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q geo-lsep: bc or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a rev_implies:  Q

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a1,a2,b1,b2,c1,c2:Point.
    (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  c1  \mequiv{}  c2  {}\mRightarrow{}  (a1  \#  b1c1  \mLeftarrow{}{}\mRightarrow{}  a2  \#  b2c2))



Date html generated: 2020_05_20-AM-09_47_30
Last ObjectModification: 2019_11_12-AM-10_47_10

Theory : euclidean!plane!geometry


Home Index