Step * 2 of Lemma geo-lt-angle-degenerate-case2


1. EuclideanPlane
2. Point
3. Point
4. Point
5. Point
6. Point
7. b
8. yz
⊢ ∃p,p',x',z':Point. (aba ≅a xyp ∧ B(yp'p) ∧ (out(y xx') ∧ out(y zz')) ∧ B(xyp)) ∧ B(x'p'z') ∧ p' z')
BY
((D With ⌜x⌝  THEN Auto)
   THEN (Assert aba ≅a xyx BY
               (InstLemma `zero-angles-congruent` [⌜e⌝;⌜a⌝;⌜b⌝;⌜a⌝;⌜x⌝;⌜y⌝;⌜x⌝]⋅ THEN Auto))
   THEN (InstConcl [⌜x⌝;⌜x⌝;⌜z⌝]⋅ THEN Auto)
   THEN 0
   THEN Auto) }


Latex:


Latex:

1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  x  :  Point
5.  y  :  Point
6.  z  :  Point
7.  a  \#  b
8.  x  \#  yz
\mvdash{}  \mexists{}p,p',x',z':Point
      (aba  \mcong{}\msuba{}  xyp  \mwedge{}  B(yp'p)  \mwedge{}  (out(y  xx')  \mwedge{}  out(y  zz'))  \mwedge{}  (\mneg{}B(xyp))  \mwedge{}  B(x'p'z')  \mwedge{}  p'  \#  z')


By


Latex:
((D  0  With  \mkleeneopen{}x\mkleeneclose{}    THEN  Auto)
  THEN  (Assert  aba  \mcong{}\msuba{}  xyx  BY
                          (InstLemma  `zero-angles-congruent`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{}  THEN  Auto))
  THEN  (InstConcl  [\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}z\mkleeneclose{}]\mcdot{}  THEN  Auto)
  THEN  D  0
  THEN  Auto)




Home Index