Nuprl Lemma : geo-lt-lengths-to-sep

e:EuclideanPlane. ∀a,b,c:Point.  (|ab| < |ac|  c)


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-sep: b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: or: P ∨ Q basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane guard: {T} uimplies: supposing a geo-gt: cd > ab squash: T sq_stable: SqStable(P) exists: x:A. B[x] and: P ∧ Q not: ¬A basic-geometry-: BasicGeometry- geo-eq: a ≡ b false: False geo-length-type: Length so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] geo-length: |s| top: Top true: True iff: ⇐⇒ Q cand: c∧ B rev_implies:  Q uiff: uiff(P;Q) stable: Stable{P} geo-zero-length: 0 oriented-plane: OrientedPlane

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (|ab|  <  |ac|  {}\mRightarrow{}  b  \#  c)



Date html generated: 2020_05_20-AM-10_41_58
Last ObjectModification: 2020_01_27-PM-09_59_10

Theory : euclidean!plane!geometry


Home Index