Nuprl Lemma : geo-sas
∀e:BasicGeometry. ∀a,b,c,A,B,C:Point.
  (bc ≅ BC) supposing (((ab ≅ AB ∧ ac ≅ AC) ∧ bac ≅a BAC) and (Triangle(a;b;c) ∧ Triangle(A;B;C)))
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz, 
geo-tri: Triangle(a;b;c), 
basic-geometry: BasicGeometry, 
geo-congruent: ab ≅ cd, 
geo-point: Point, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
and: P ∧ Q, 
geo-cong-angle: abc ≅a xyz, 
exists: ∃x:A. B[x], 
geo-tri: Triangle(a;b;c), 
geo-congruent: ab ≅ cd, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
uiff: uiff(P;Q)
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,A,B,C:Point.
    (bc  \mcong{}  BC)  supposing  (((ab  \mcong{}  AB  \mwedge{}  ac  \mcong{}  AC)  \mwedge{}  bac  \mcong{}\msuba{}  BAC)  and  (Triangle(a;b;c)  \mwedge{}  Triangle(A;B;C)))
Date html generated:
2020_05_20-AM-09_58_40
Last ObjectModification:
2019_12_26-PM-08_32_40
Theory : euclidean!plane!geometry
Home
Index