Nuprl Lemma : geo-sas

e:BasicGeometry. ∀a,b,c,A,B,C:Point.
  (bc ≅ BC) supposing (((ab ≅ AB ∧ ac ≅ AC) ∧ bac ≅a BAC) and (Triangle(a;b;c) ∧ Triangle(A;B;C)))


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz geo-tri: Triangle(a;b;c) basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-point: Point uimplies: supposing a all: x:A. B[x] and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q geo-cong-angle: abc ≅a xyz exists: x:A. B[x] geo-tri: Triangle(a;b;c) geo-congruent: ab ≅ cd not: ¬A implies:  Q false: False uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} prop: basic-geometry: BasicGeometry uiff: uiff(P;Q)

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,A,B,C:Point.
    (bc  \mcong{}  BC)  supposing  (((ab  \mcong{}  AB  \mwedge{}  ac  \mcong{}  AC)  \mwedge{}  bac  \mcong{}\msuba{}  BAC)  and  (Triangle(a;b;c)  \mwedge{}  Triangle(A;B;C)))



Date html generated: 2020_05_20-AM-09_58_40
Last ObjectModification: 2019_12_26-PM-08_32_40

Theory : euclidean!plane!geometry


Home Index