Nuprl Lemma : geo-sep_functionality

e:EuclideanPlane. ∀a1,a2,b1,b2:Point.  (a1 ≡ a2  b1 ≡ b2  (a1 b1 ⇐⇒ a2 b2))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-eq: a ≡ b geo-sep: b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: rev_implies:  Q

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a1,a2,b1,b2:Point.    (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  (a1  \#  b1  \mLeftarrow{}{}\mRightarrow{}  a2  \#  b2))



Date html generated: 2020_05_20-AM-09_48_20
Last ObjectModification: 2020_01_13-PM-03_12_48

Theory : euclidean!plane!geometry


Home Index