Nuprl Lemma : heyting-not-not-inner-pasch

e:HeytingGeometry. ∀a,b,c:Point. ∀p:{p:Point| a_p_c} . ∀q:{q:Point| b_q_c} .  (¬¬(∃x:Point. (p_x_b ∧ q_x_a)))


Proof




Definitions occuring in Statement :  heyting-geometry: HeytingGeometry geo-between: a_b_c geo-point: Point all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  oriented-plane: OrientedPlane euclidean-plane: EuclideanPlane heyting-geometry: HeytingGeometry
Lemmas referenced :  not-not-inner-pasch
Rules used in proof :  hypothesis sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalRule extract_by_obid introduction cut

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.  \mforall{}p:\{p:Point|  a\_p\_c\}  .  \mforall{}q:\{q:Point|  b\_q\_c\}  .
    (\mneg{}\mneg{}(\mexists{}x:Point.  (p\_x\_b  \mwedge{}  q\_x\_a)))



Date html generated: 2017_10_02-PM-07_01_13
Last ObjectModification: 2017_08_06-PM-09_15_03

Theory : euclidean!plane!geometry


Home Index