Nuprl Lemma : heyting-not-not-inner-pasch
∀e:HeytingGeometry. ∀a,b,c:Point. ∀p:{p:Point| a_p_c} . ∀q:{q:Point| b_q_c} .  (¬¬(∃x:Point. (p_x_b ∧ q_x_a)))
Proof
Definitions occuring in Statement : 
heyting-geometry: HeytingGeometry
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
oriented-plane: OrientedPlane
, 
euclidean-plane: EuclideanPlane
, 
heyting-geometry: HeytingGeometry
Lemmas referenced : 
not-not-inner-pasch
Rules used in proof : 
hypothesis, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalRule, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.  \mforall{}p:\{p:Point|  a\_p\_c\}  .  \mforall{}q:\{q:Point|  b\_q\_c\}  .
    (\mneg{}\mneg{}(\mexists{}x:Point.  (p\_x\_b  \mwedge{}  q\_x\_a)))
Date html generated:
2017_10_02-PM-07_01_13
Last ObjectModification:
2017_08_06-PM-09_15_03
Theory : euclidean!plane!geometry
Home
Index