Nuprl Lemma : interior-angles-unique

e:EuclideanPlane. ∀a,b,c,d,b',c',p:Point.
  (a bc  out(b dc)  out(a bb')  out(a cc')  B(b'pc')  c'  bad < bac  bap ≅a bad  out(a dp))


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz geo-out: out(p ab) geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-between: B(abc) geo-lsep: bc geo-sep: b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-out: out(p ab) and: P ∧ Q cand: c∧ B or: P ∨ Q not: ¬A false: False geo-cong-angle: abc ≅a xyz stable: Stable{P} geo-eq: a ≡ b iff: ⇐⇒ Q geo-colinear: Colinear(a;b;c) oriented-plane: OrientedPlane exists: x:A. B[x] rev_implies:  Q append: as bs so_lambda: so_lambda3 top: Top so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) select: L[n] cons: [a b] subtract: m basic-geometry-: BasicGeometry- geo-lsep: bc geo-strict-between: a-b-c

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,b',c',p:Point.
    (a  \#  bc
    {}\mRightarrow{}  out(b  dc)
    {}\mRightarrow{}  out(a  bb')
    {}\mRightarrow{}  out(a  cc')
    {}\mRightarrow{}  B(b'pc')
    {}\mRightarrow{}  p  \#  c'
    {}\mRightarrow{}  bad  <  bac
    {}\mRightarrow{}  bap  \mcong{}\msuba{}  bad
    {}\mRightarrow{}  out(a  dp))



Date html generated: 2020_05_20-AM-10_38_23
Last ObjectModification: 2020_01_13-PM-04_52_05

Theory : euclidean!plane!geometry


Home Index