Nuprl Lemma : interior-implies-lt-angle

e:EuclideanPlane. ∀a,b,c,x,y,z:Point.
  (x yz  leftof ba  (∃f:Point. ((f leftof ba ∧ leftof cb) ∧ abf ≅a xyz))  xyz < abc)


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-left: leftof bc geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q geo-lt-angle: abc < xyz member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane cand: c∧ B not: ¬A false: False geo-out: out(p ab) iff: ⇐⇒ Q geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} rev_implies:  Q lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) select: L[n] cons: [a b] subtract: m basic-geometry-: BasicGeometry- geo-eq: a ≡ b geo-strict-between: a-b-c oriented-plane: OrientedPlane

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.
    (x  \#  yz  {}\mRightarrow{}  c  leftof  ba  {}\mRightarrow{}  (\mexists{}f:Point.  ((f  leftof  ba  \mwedge{}  f  leftof  cb)  \mwedge{}  abf  \mcong{}\msuba{}  xyz))  {}\mRightarrow{}  xyz  <  abc)



Date html generated: 2020_05_20-AM-10_06_06
Last ObjectModification: 2020_01_13-PM-04_02_44

Theory : euclidean!plane!geometry


Home Index