Nuprl Lemma : left-right-colinear-cases

e:EuclideanPlane. ∀u,v,b,c:Point.
  (∀a:Point. (a  Colinear(a;b;u)  Colinear(a;b;v)  (B(abu) ∨ B(abv)))) supposing (v leftof cb and leftof bc)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-between: B(abc) geo-left: leftof bc geo-sep: b geo-point: Point uimplies: supposing a all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a implies:  Q member: t ∈ T sq_stable: SqStable(P) squash: T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} prop: geo-lsep: bc or: P ∨ Q geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False select: L[n] cons: [a b] subtract: m euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- cand: c∧ B stable: Stable{P}

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}u,v,b,c:Point.
    (\mforall{}a:Point.  (a  \#  b  {}\mRightarrow{}  Colinear(a;b;u)  {}\mRightarrow{}  Colinear(a;b;v)  {}\mRightarrow{}  (B(abu)  \mvee{}  B(abv))))  supposing 
          (v  leftof  cb  and 
          u  leftof  bc)



Date html generated: 2020_05_20-AM-09_49_53
Last ObjectModification: 2020_01_13-PM-03_21_16

Theory : euclidean!plane!geometry


Home Index