Nuprl Lemma : lsep-inner-pasch
∀e:OrientedPlane. ∀a,b:Point. ∀c:{c:Point| c # ab} . ∀p:{p:Point| a-p-c} . ∀q:{q:Point| b-q-c} .
  (∃x:Point [(B(bxp) ∧ B(axq))])
Proof
Definitions occuring in Statement : 
oriented-plane: OrientedPlane
, 
geo-strict-between: a-b-c
, 
geo-between: B(abc)
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
oriented-plane: OrientedPlane
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
basic-geometry-: BasicGeometry-
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
geo-eq: a ≡ b
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
cons: [a / b]
, 
select: L[n]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
l_all: (∀x∈L.P[x])
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
geo-lsep: a # bc
Latex:
\mforall{}e:OrientedPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  c  \#  ab\}  .  \mforall{}p:\{p:Point|  a-p-c\}  .  \mforall{}q:\{q:Point|  b-q-c\}  .
    (\mexists{}x:Point  [(B(bxp)  \mwedge{}  B(axq))])
Date html generated:
2020_05_20-AM-09_50_27
Last ObjectModification:
2020_01_13-PM-03_25_20
Theory : euclidean!plane!geometry
Home
Index