Step
*
1
of Lemma
lsep-lt-straight-angle
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. x : Point
6. y : Point
7. z : Point
8. a # bc
9. x-y-z
10. x' : Point
11. b' : Point
12. out(y xb')
13. x' leftof b'y
14. x'yb' ≅a abc
⊢ abc < xyz
BY
{ ((Assert ¬out(y xz) BY
          (BLemma' `geo-not-bet-and-out` THEN Auto))
   THEN Unfold `geo-lt-angle` 0
   THEN GenRepD
   THEN (InstConcl [⌜x'⌝;⌜y⌝;⌜x⌝;⌜z⌝]⋅ THEN EAuto 1)
   THEN (InstLemma  `out-preserves-angle-cong_1` [⌜e⌝;⌜a⌝;⌜b⌝;⌜c⌝;⌜x'⌝;⌜y⌝;⌜b'⌝;⌜a⌝;⌜c⌝;⌜x'⌝;⌜x⌝]⋅ THENA EAuto  1)
   THEN FLemma  `geo-cong-angle-symmetry` [-1]
   THEN Auto) }
Latex:
Latex:
1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  x  :  Point
6.  y  :  Point
7.  z  :  Point
8.  a  \#  bc
9.  x-y-z
10.  x'  :  Point
11.  b'  :  Point
12.  out(y  xb')
13.  x'  leftof  b'y
14.  x'yb'  \mcong{}\msuba{}  abc
\mvdash{}  abc  <  xyz
By
Latex:
((Assert  \mneg{}out(y  xz)  BY
                (BLemma'  `geo-not-bet-and-out`  THEN  Auto))
  THEN  Unfold  `geo-lt-angle`  0
  THEN  GenRepD
  THEN  (InstConcl  [\mkleeneopen{}x'\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}z\mkleeneclose{}]\mcdot{}  THEN  EAuto  1)
  THEN  (InstLemma    `out-preserves-angle-cong\_1`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}x'\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}b'\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}x'\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{}
              THENA  EAuto    1
              )
  THEN  FLemma    `geo-cong-angle-symmetry`  [-1]
  THEN  Auto)
Home
Index