Step
*
of Lemma
mk-eu_wf2
No Annotations
∀[self:GeometryPrimitives]. ∀[Sstab:∀a,b,c,d:Point. SqStable(ab>cd)]. ∀[Lstab:∀a,b,c:Point. SqStable(a # bc)].
∀[Sepor:∀a:Point. ∀b:{b:Point| a # b} . ∀c:Point. (a # c ∨ b # c)]. ∀[nontriv:∃a:Point. (∃b:Point [a # b])].
∀[SS:∀a,b:Point. ∀u:{u:Point| u leftof ab} . ∀v:{v:Point| v leftof ba} . (∃x:Point [(Colinear(a;b;x) ∧ B(uxv))])].
∀[SC:∀c,d,a:Point. ∀b:{b:Point| b # a ∧ B(cbd)} . (∃u:Point [(cu ≅ cd ∧ B(abu) ∧ (b # d
⇒ b # u))])].
∀[CC:∀a,b:Point. ∀c:{c:Point| a # c} . ∀d:{d:Point| StrictOverlap(a;b;c;d)} .
(∃u:Point [(ab ≅ au ∧ cd ≅ cu ∧ u leftof ac)])].
primitive=self
Ssquashstable=Sstab
Lorsquashstable=Lstab
SepOr=Sepor
nontriv=nontriv
SS=SS
SC=SC
CC=CC ∈ EuclideanPlane
supposing BasicGeometryAxioms(self)
BY
{ (Intros
THEN (MemTypeCD THENW Auto)
THEN Try ((BLemma `mk-eu_wf` THEN Trivial))
THEN ParallelLast
THEN NthHypSq (-1)
THEN RepUR ``basic-geo-axioms mk-eu geo-lsep`` 0
THEN UnfoldGeoAbbreviations 0
THEN SqEqCD) }
Latex:
Latex:
No Annotations
\mforall{}[self:GeometryPrimitives]. \mforall{}[Sstab:\mforall{}a,b,c,d:Point. SqStable(ab>cd)]. \mforall{}[Lstab:\mforall{}a,b,c:Point.
SqStable(a \# bc)].
\mforall{}[Sepor:\mforall{}a:Point. \mforall{}b:\{b:Point| a \# b\} . \mforall{}c:Point. (a \# c \mvee{} b \# c)]. \mforall{}[nontriv:\mexists{}a:Point
(\mexists{}b:Point [a \# b])].
\mforall{}[SS:\mforall{}a,b:Point. \mforall{}u:\{u:Point| u leftof ab\} . \mforall{}v:\{v:Point| v leftof ba\} .
(\mexists{}x:Point [(Colinear(a;b;x) \mwedge{} B(uxv))])]. \mforall{}[SC:\mforall{}c,d,a:Point. \mforall{}b:\{b:Point| b \# a \mwedge{} B(cbd)\} .
(\mexists{}u:Point [(cu \mcong{} cd
\mwedge{} B(abu)
\mwedge{} (b \# d {}\mRightarrow{} b \# u))])].
\mforall{}[CC:\mforall{}a,b:Point. \mforall{}c:\{c:Point| a \# c\} . \mforall{}d:\{d:Point| StrictOverlap(a;b;c;d)\} .
(\mexists{}u:Point [(ab \mcong{} au \mwedge{} cd \mcong{} cu \mwedge{} u leftof ac)])].
primitive=self
Ssquashstable=Sstab
Lorsquashstable=Lstab
SepOr=Sepor
nontriv=nontriv
SS=SS
SC=SC
CC=CC \mmember{} EuclideanPlane
supposing BasicGeometryAxioms(self)
By
Latex:
(Intros
THEN (MemTypeCD THENW Auto)
THEN Try ((BLemma `mk-eu\_wf` THEN Trivial))
THEN ParallelLast
THEN NthHypSq (-1)
THEN RepUR ``basic-geo-axioms mk-eu geo-lsep`` 0
THEN UnfoldGeoAbbreviations 0
THEN SqEqCD)
Home
Index