Step
*
of Lemma
mk-eu_wf
No Annotations
∀[self:GeometryPrimitives]. ∀[Sstab:∀a,b,c,d:Point. SqStable(ab>cd)]. ∀[Lstab:∀a,b,c:Point. SqStable(a # bc)].
∀[Sepor:∀a:Point. ∀b:{b:Point| a # b} . ∀c:Point. (a # c ∨ b # c)]. ∀[nontriv:∃a:Point. (∃b:Point [a # b])].
∀[SS:∀a,b:Point. ∀u:{u:Point| u leftof ab} . ∀v:{v:Point| v leftof ba} . (∃x:Point [(Colinear(a;b;x) ∧ B(uxv))])].
∀[SC:∀c,d,a:Point. ∀b:{b:Point| b # a ∧ B(cbd)} . (∃u:Point [(cu ≅ cd ∧ B(abu) ∧ (b # d
⇒ b # u))])].
∀[CC:∀a,b:Point. ∀c:{c:Point| a # c} . ∀d:{d:Point| StrictOverlap(a;b;c;d)} .
(∃u:Point [(ab ≅ au ∧ cd ≅ cu ∧ u leftof ac)])].
(primitive=self
Ssquashstable=Sstab
Lorsquashstable=Lstab
SepOr=Sepor
nontriv=nontriv
SS=SS
SC=SC
CC=CC ∈ EuclideanPlaneStructure)
BY
{ (Auto
THEN Unfolds ``mk-eu euclidean-plane-structure`` 0
THEN RepeatFor 7 ((RecordPlusTypeCD
THENL [ Id; (UnfoldGeoAbbreviations 0 THEN FoldGeoAbbreviations 0 THEN Try (Trivial))]
))) }
1
1. self : GeometryPrimitives
2. Sstab : ∀a,b,c,d:Point. SqStable(ab>cd)
3. Lstab : ∀a,b,c:Point. SqStable(a # bc)
4. Sepor : ∀a:Point. ∀b:{b:Point| a # b} . ∀c:Point. (a # c ∨ b # c)
5. nontriv : ∃a:Point. (∃b:Point [a # b])
6. SS : ∀a,b:Point. ∀u:{u:Point| u leftof ab} . ∀v:{v:Point| v leftof ba} . (∃x:Point [(Colinear(a;b;x) ∧ B(uxv))])
7. SC : ∀c,d,a:Point. ∀b:{b:Point| b # a ∧ B(cbd)} . (∃u:Point [(cu ≅ cd ∧ B(abu) ∧ (b # d
⇒ b # u))])
8. CC : ∀a,b:Point. ∀c:{c:Point| a # c} . ∀d:{d:Point| StrictOverlap(a;b;c;d)} .
(∃u:Point [(ab ≅ au ∧ cd ≅ cu ∧ u leftof ac)])
⊢ self["Ssquashstable" := Sstab]["Lorsquashstable" := Lstab]["SepOr" := Sepor]["nontrivial" := nontriv]["SS" := SS]
["SS" := SS]["SC" := SC]["CC" := CC] ∈ GeometryPrimitives
Latex:
Latex:
No Annotations
\mforall{}[self:GeometryPrimitives]. \mforall{}[Sstab:\mforall{}a,b,c,d:Point. SqStable(ab>cd)]. \mforall{}[Lstab:\mforall{}a,b,c:Point.
SqStable(a \# bc)].
\mforall{}[Sepor:\mforall{}a:Point. \mforall{}b:\{b:Point| a \# b\} . \mforall{}c:Point. (a \# c \mvee{} b \# c)]. \mforall{}[nontriv:\mexists{}a:Point
(\mexists{}b:Point [a \# b])].
\mforall{}[SS:\mforall{}a,b:Point. \mforall{}u:\{u:Point| u leftof ab\} . \mforall{}v:\{v:Point| v leftof ba\} .
(\mexists{}x:Point [(Colinear(a;b;x) \mwedge{} B(uxv))])]. \mforall{}[SC:\mforall{}c,d,a:Point. \mforall{}b:\{b:Point| b \# a \mwedge{} B(cbd)\} .
(\mexists{}u:Point [(cu \mcong{} cd
\mwedge{} B(abu)
\mwedge{} (b \# d {}\mRightarrow{} b \# u))])].
\mforall{}[CC:\mforall{}a,b:Point. \mforall{}c:\{c:Point| a \# c\} . \mforall{}d:\{d:Point| StrictOverlap(a;b;c;d)\} .
(\mexists{}u:Point [(ab \mcong{} au \mwedge{} cd \mcong{} cu \mwedge{} u leftof ac)])].
(primitive=self
Ssquashstable=Sstab
Lorsquashstable=Lstab
SepOr=Sepor
nontriv=nontriv
SS=SS
SC=SC
CC=CC \mmember{} EuclideanPlaneStructure)
By
Latex:
(Auto
THEN Unfolds ``mk-eu euclidean-plane-structure`` 0
THEN RepeatFor 7 ((RecordPlusTypeCD
THENL [ Id
; (UnfoldGeoAbbreviations 0
THEN FoldGeoAbbreviations 0
THEN Try (Trivial))]
)))
Home
Index