Nuprl Lemma : p5-triangles

e:HeytingGeometry. ∀a,b,c:Point.  (a bc  ab ≅ cb  (bac ≅a bca ∧ (∀p,q:Point.  ((b-a-p ∧ b-c-q)  pac ≅a qca))))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-cong-angle: abc ≅a xyz geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B geo-cong-angle: abc ≅a xyz member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: heyting-geometry: HeytingGeometry uiff: uiff(P;Q) exists: x:A. B[x] euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- squash: T true: True

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.
    (a  \#  bc  {}\mRightarrow{}  ab  \mcong{}  cb  {}\mRightarrow{}  (bac  \mcong{}\msuba{}  bca  \mwedge{}  (\mforall{}p,q:Point.    ((b-a-p  \mwedge{}  b-c-q)  {}\mRightarrow{}  pac  \mcong{}\msuba{}  qca))))



Date html generated: 2020_05_20-AM-10_33_46
Last ObjectModification: 2020_01_27-PM-09_59_22

Theory : euclidean!plane!geometry


Home Index