Step
*
1
of Lemma
pgeo-minimum-order-proof2
1. pg : ProjectivePlane
2. n : ℕ
3. l : Line
4. p,q:{p:Point| p I l} //p ≡ q ~ ℕn + 1
⊢ n ≥ 2
BY
{ (SupposeNot
THEN (InstLemma `pgeo-three-points-axiom` [⌜pg⌝;⌜l⌝]⋅ THENA Auto)
THEN ExRepD
THEN (Assert {p:Point| p I l} ⊆r (p,q:{p:Point| p I l} //p ≡ q) BY
Auto)
THEN (Assert (a ∈ {p:Point| p I l} ) ∧ (b ∈ {p:Point| p I l} ) ∧ (c ∈ {p:Point| p I l} ) BY
Auto)
THEN (InstLemma `cardinality-le-no_repeats-length` [⌜p,q:{p:Point| p I l} //p ≡ q⌝;⌜2⌝;⌜[a; b; c]⌝]⋅ THENA Auto)) }
1
1. pg : ProjectivePlane
2. n : ℕ
3. l : Line
4. p,q:{p:Point| p I l} //p ≡ q ~ ℕn + 1
5. ¬(n ≥ 2 )
6. a : Point
7. b : Point
8. c : Point
9. a I l
10. b I l
11. c I l
12. a ≠ b
13. b ≠ c
14. c ≠ a
15. {p:Point| p I l} ⊆r (p,q:{p:Point| p I l} //p ≡ q)
16. a ∈ {p:Point| p I l}
17. b ∈ {p:Point| p I l}
18. c ∈ {p:Point| p I l}
⊢ |p,q:{p:Point| p I l} //p ≡ q| ≤ 2
2
1. pg : ProjectivePlane
2. n : ℕ
3. l : Line
4. p,q:{p:Point| p I l} //p ≡ q ~ ℕn + 1
5. ¬(n ≥ 2 )
6. a : Point
7. b : Point
8. c : Point
9. a I l
10. b I l
11. c I l
12. a ≠ b
13. b ≠ c
14. c ≠ a
15. {p:Point| p I l} ⊆r (p,q:{p:Point| p I l} //p ≡ q)
16. a ∈ {p:Point| p I l}
17. b ∈ {p:Point| p I l}
18. c ∈ {p:Point| p I l}
19. no_repeats(p,q:{p:Point| p I l} //p ≡ q;[c])
⊢ ¬(b ∈ [c])
3
1. pg : ProjectivePlane
2. n : ℕ
3. l : Line
4. p,q:{p:Point| p I l} //p ≡ q ~ ℕn + 1
5. ¬(n ≥ 2 )
6. a : Point
7. b : Point
8. c : Point
9. a I l
10. b I l
11. c I l
12. a ≠ b
13. b ≠ c
14. c ≠ a
15. {p:Point| p I l} ⊆r (p,q:{p:Point| p I l} //p ≡ q)
16. a ∈ {p:Point| p I l}
17. b ∈ {p:Point| p I l}
18. c ∈ {p:Point| p I l}
19. no_repeats(p,q:{p:Point| p I l} //p ≡ q;[b; c])
⊢ ¬(a ∈ [b; c])
4
1. pg : ProjectivePlane
2. n : ℕ
3. l : Line
4. p,q:{p:Point| p I l} //p ≡ q ~ ℕn + 1
5. ¬(n ≥ 2 )
6. a : Point
7. b : Point
8. c : Point
9. a I l
10. b I l
11. c I l
12. a ≠ b
13. b ≠ c
14. c ≠ a
15. {p:Point| p I l} ⊆r (p,q:{p:Point| p I l} //p ≡ q)
16. (a ∈ {p:Point| p I l} ) ∧ (b ∈ {p:Point| p I l} ) ∧ (c ∈ {p:Point| p I l} )
17. ||[a; b; c]|| ≤ 2
⊢ n ≥ 2
Latex:
Latex:
1. pg : ProjectivePlane
2. n : \mBbbN{}
3. l : Line
4. p,q:\{p:Point| p I l\} //p \mequiv{} q \msim{} \mBbbN{}n + 1
\mvdash{} n \mgeq{} 2
By
Latex:
(SupposeNot
THEN (InstLemma `pgeo-three-points-axiom` [\mkleeneopen{}pg\mkleeneclose{};\mkleeneopen{}l\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ExRepD
THEN (Assert \{p:Point| p I l\} \msubseteq{}r (p,q:\{p:Point| p I l\} //p \mequiv{} q) BY
Auto)
THEN (Assert (a \mmember{} \{p:Point| p I l\} ) \mwedge{} (b \mmember{} \{p:Point| p I l\} ) \mwedge{} (c \mmember{} \{p:Point| p I l\} ) BY
Auto)
THEN (InstLemma `cardinality-le-no\_repeats-length`
[\mkleeneopen{}p,q:\{p:Point| p I l\} //p \mequiv{} q\mkleeneclose{};\mkleeneopen{}2\mkleeneclose{};\mkleeneopen{}[a; b; c]\mkleeneclose{}]\mcdot{}
THENA Auto
))
Home
Index