Nuprl Lemma : right-angle-SAS
∀e:EuclideanPlane. ∀a,b,c,x,y,z:Point.
  ((Rabc ∧ a # b ∧ b # c) 
⇒ (Rxyz ∧ x # y ∧ y # z) 
⇒ ab ≅ xy 
⇒ bc ≅ yz 
⇒ ac ≅ xz)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
right-angle: Rabc
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a # b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
right-angle: Rabc
, 
exists: ∃x:A. B[x]
, 
geo-midpoint: a=m=b
, 
basic-geometry-: BasicGeometry-
, 
uiff: uiff(P;Q)
, 
geo-equilateral: EQΔ(a;b;c)
, 
squash: ↓T
, 
true: True
, 
cand: A c∧ B
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
ge: i ≥ j 
, 
append: as @ bs
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
euclidean-plane: EuclideanPlane
, 
geo-eq: a ≡ b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
oriented-plane: OrientedPlane
, 
geo-strict-between: a-b-c
, 
geo-cong-angle: abc ≅a xyz
, 
geo-tri: Triangle(a;b;c)
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.
    ((Rabc  \mwedge{}  a  \#  b  \mwedge{}  b  \#  c)  {}\mRightarrow{}  (Rxyz  \mwedge{}  x  \#  y  \mwedge{}  y  \#  z)  {}\mRightarrow{}  ab  \mcong{}  xy  {}\mRightarrow{}  bc  \mcong{}  yz  {}\mRightarrow{}  ac  \mcong{}  xz)
Date html generated:
2020_05_20-AM-10_06_49
Last ObjectModification:
2019_12_31-PM-06_12_36
Theory : euclidean!plane!geometry
Home
Index