Step * of Lemma straight-angle-sum1_symm

e:EuclideanPlane. ∀a,b,c,x,y,z,i,j,k:Point.  (abc xyz ≅ ijk  x-y-z  out(b ac))
BY
(Auto
   THEN (Unfold `hp-angle-sum` -2 THEN ExRepD)
   THEN (Assert b ≠ a ∧ b ≠ BY
               (D -7 THEN Auto))
   THEN (InstLemma `angle-cong-preserves-straight-angle` [⌜e⌝;⌜k⌝;⌜j⌝;⌜p⌝;⌜x⌝;⌜y⌝;⌜z⌝]⋅ THENA EAuto 1)) }

1
1. EuclideanPlane
2. Point
3. Point
4. Point
5. Point
6. Point
7. Point
8. Point
9. Point
10. Point
11. Point
12. p' Point
13. d' Point
14. f' Point
15. abc ≅a ijp
16. kjp ≅a xyz
17. j_p'_p
18. out(j id')
19. out(j kf')
20. d'-p'-f'
21. x-y-z
22. b ≠ a ∧ b ≠ c
23. k-j-p
⊢ out(b ac)


Latex:


Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,i,j,k:Point.    (abc  +  xyz  \mcong{}  ijk  {}\mRightarrow{}  x-y-z  {}\mRightarrow{}  out(b  ac))


By


Latex:
(Auto
  THEN  (Unfold  `hp-angle-sum`  -2  THEN  ExRepD)
  THEN  (Assert  b  \mneq{}  a  \mwedge{}  b  \mneq{}  c  BY
                          (D  -7  THEN  Auto))
  THEN  (InstLemma  `angle-cong-preserves-straight-angle`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}k\mkleeneclose{};\mkleeneopen{}j\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}z\mkleeneclose{}]\mcdot{}
              THENA  EAuto  1
              ))




Home Index