Nuprl Lemma : tarski-erect-perp-in-side

e:HeytingGeometry. ∀a,b,c:Point.
  (c ba  (∃p,t,d:Point. ((((ab  ⊥pa ∧ Colinear(a;b;t)) ∧ p-t-d) ∧ geo-tar-same-side(e;c;d;a;b)) ∧ ba)))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-perp-in: ab  ⊥cd geo-tar-same-side: geo-tar-same-side(e;a;b;p;q) geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T guard: {T} and: P ∧ Q cand: c∧ B exists: x:A. B[x] heyting-geometry: HeytingGeometry euclidean-plane: EuclideanPlane uall: [x:A]. B[x] subtype_rel: A ⊆B prop: or: P ∨ Q uimplies: supposing a geo-midpoint: a=m=b geo-strict-between: a-b-c l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False select: L[n] cons: [a b] subtract: m less_than: a < b squash: T true: True ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k geo-triangle: bc geo-tar-same-side: geo-tar-same-side(e;a;b;p;q) geo-tar-opp-side: geo-tar-opp-side(e;a;b;p;q) basic-geometry-: BasicGeometry- geo-perp-in: ab  ⊥cd uiff: uiff(P;Q) iff: ⇐⇒ Q

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.
    (c  \#  ba
    {}\mRightarrow{}  (\mexists{}p,t,d:Point
              ((((ab    \mbot{}a  pa  \mwedge{}  Colinear(a;b;t))  \mwedge{}  p-t-d)  \mwedge{}  geo-tar-same-side(e;c;d;a;b))  \mwedge{}  p  \#  ba)))



Date html generated: 2020_05_20-AM-10_34_06
Last ObjectModification: 2020_01_13-PM-04_34_40

Theory : euclidean!plane!geometry


Home Index