Step
*
of Lemma
hyptrans_decomp
∀rv:InnerProductSpace. ∀e,x:Point.
∃h:Point. ∃tau:ℝ. ((h ⋅ e = r0) ∧ x ≡ h + sinh(tau) * rsqrt(r1 + h^2)*e) supposing e^2 = r1
BY
{ Auto }
1
1. rv : InnerProductSpace
2. e : Point
3. x : Point
4. e^2 = r1
⊢ ∃h:Point. ∃tau:ℝ. ((h ⋅ e = r0) ∧ x ≡ h + sinh(tau) * rsqrt(r1 + h^2)*e)
Latex:
Latex:
\mforall{}rv:InnerProductSpace. \mforall{}e,x:Point.
\mexists{}h:Point. \mexists{}tau:\mBbbR{}. ((h \mcdot{} e = r0) \mwedge{} x \mequiv{} h + sinh(tau) * rsqrt(r1 + h\^{}2)*e) supposing e\^{}2 = r1
By
Latex:
Auto
Home
Index