Step
*
1
1
1
1
2
of Lemma
implies-isometry
1. rv : InnerProductSpace
2. f : Point ⟶ Point
3. r : {r:ℝ| r0 < r}
4. N : {2...}
5. ∀x,y:Point. (x ≡ y
⇒ f x ≡ f y)
6. ∀x,y:Point. ((||x - y|| = r)
⇒ (||f x - f y|| ≤ r))
7. ∀x,y:Point. ((||x - y|| = (r(N) * r))
⇒ ((r(N) * r) ≤ ||f x - f y||))
8. ∀x,y:Point. (((||x - y|| = r) ∨ (||x - y|| = (r(2) * r)))
⇒ (||f x - f y|| = ||x - y||))
9. ∀s,r@0:ℝ.
((∃n,m:ℕ+. (s = (r(n)/r(m))))
⇒ (∃n,m:ℕ+. (r@0 = (r(n)/r(m))))
⇒ (∀x,y:Point. ((||x - y|| ∈ (r@0 * r, s * r))
⇒ (||f x - f y|| ∈ [r@0 * r, s * r]))))
10. x : Point
11. y : Point
12. ¬(r0 < ||x - y||)
⊢ ||f x - f y|| = ||x - y||
BY
{ ((FLemma `not-rless` [-1] THENA Auto)
THEN (Assert r0 ≤ ||x - y|| BY
Auto)
THEN (Assert ||x - y|| = r0 BY
(BLemma `rleq_antisymmetry` THEN Auto))) }
1
1. rv : InnerProductSpace
2. f : Point ⟶ Point
3. r : {r:ℝ| r0 < r}
4. N : {2...}
5. ∀x,y:Point. (x ≡ y
⇒ f x ≡ f y)
6. ∀x,y:Point. ((||x - y|| = r)
⇒ (||f x - f y|| ≤ r))
7. ∀x,y:Point. ((||x - y|| = (r(N) * r))
⇒ ((r(N) * r) ≤ ||f x - f y||))
8. ∀x,y:Point. (((||x - y|| = r) ∨ (||x - y|| = (r(2) * r)))
⇒ (||f x - f y|| = ||x - y||))
9. ∀s,r@0:ℝ.
((∃n,m:ℕ+. (s = (r(n)/r(m))))
⇒ (∃n,m:ℕ+. (r@0 = (r(n)/r(m))))
⇒ (∀x,y:Point. ((||x - y|| ∈ (r@0 * r, s * r))
⇒ (||f x - f y|| ∈ [r@0 * r, s * r]))))
10. x : Point
11. y : Point
12. ¬(r0 < ||x - y||)
13. ||x - y|| ≤ r0
14. r0 ≤ ||x - y||
15. ||x - y|| = r0
⊢ ||f x - f y|| = ||x - y||
Latex:
Latex:
1. rv : InnerProductSpace
2. f : Point {}\mrightarrow{} Point
3. r : \{r:\mBbbR{}| r0 < r\}
4. N : \{2...\}
5. \mforall{}x,y:Point. (x \mequiv{} y {}\mRightarrow{} f x \mequiv{} f y)
6. \mforall{}x,y:Point. ((||x - y|| = r) {}\mRightarrow{} (||f x - f y|| \mleq{} r))
7. \mforall{}x,y:Point. ((||x - y|| = (r(N) * r)) {}\mRightarrow{} ((r(N) * r) \mleq{} ||f x - f y||))
8. \mforall{}x,y:Point. (((||x - y|| = r) \mvee{} (||x - y|| = (r(2) * r))) {}\mRightarrow{} (||f x - f y|| = ||x - y||))
9. \mforall{}s,r@0:\mBbbR{}.
((\mexists{}n,m:\mBbbN{}\msupplus{}. (s = (r(n)/r(m))))
{}\mRightarrow{} (\mexists{}n,m:\mBbbN{}\msupplus{}. (r@0 = (r(n)/r(m))))
{}\mRightarrow{} (\mforall{}x,y:Point. ((||x - y|| \mmember{} (r@0 * r, s * r)) {}\mRightarrow{} (||f x - f y|| \mmember{} [r@0 * r, s * r]))))
10. x : Point
11. y : Point
12. \mneg{}(r0 < ||x - y||)
\mvdash{} ||f x - f y|| = ||x - y||
By
Latex:
((FLemma `not-rless` [-1] THENA Auto)
THEN (Assert r0 \mleq{} ||x - y|| BY
Auto)
THEN (Assert ||x - y|| = r0 BY
(BLemma `rleq\_antisymmetry` THEN Auto)))
Home
Index