Step
*
1
of Lemma
ip-circle-circle-lemma1
.....assertion.....
1. rv : InnerProductSpace
2. r1 : {r:ℝ| r0 ≤ r}
3. r2 : {r:ℝ| r0 ≤ r}
4. b : Point(rv)
5. r0 < ||b||
6. b' : Point(rv)
7. b ⋅ b' = r0
8. ||b'|| = ||b||
9. cc : ℝ
10. ((r1^2 - r2^2) + ||b||^2) = cc ∈ ℝ
11. cc^2 ≤ (r(4) * ||b||^2 * r1^2)
⊢ r0 ≤ ((||b||^2 * r1^2) - (cc/r(2))^2)
BY
{ (nRAdd ⌜(cc/r(2))^2⌝ 0⋅
THEN (Assert r(2)^2 = r(4) BY
(RWO "rnexp-int" 0 THEN Auto))
THEN (Assert r0 < r(2)^2 BY
(RWO "-1" 0 THEN Auto))
THEN (RWW "rnexp-rdiv< -2" 0 THENA Auto)
THEN nRMul ⌜r(4)⌝ 0⋅
THEN Auto) }
Latex:
Latex:
.....assertion.....
1. rv : InnerProductSpace
2. r1 : \{r:\mBbbR{}| r0 \mleq{} r\}
3. r2 : \{r:\mBbbR{}| r0 \mleq{} r\}
4. b : Point(rv)
5. r0 < ||b||
6. b' : Point(rv)
7. b \mcdot{} b' = r0
8. ||b'|| = ||b||
9. cc : \mBbbR{}
10. ((r1\^{}2 - r2\^{}2) + ||b||\^{}2) = cc
11. cc\^{}2 \mleq{} (r(4) * ||b||\^{}2 * r1\^{}2)
\mvdash{} r0 \mleq{} ((||b||\^{}2 * r1\^{}2) - (cc/r(2))\^{}2)
By
Latex:
(nRAdd \mkleeneopen{}(cc/r(2))\^{}2\mkleeneclose{} 0\mcdot{}
THEN (Assert r(2)\^{}2 = r(4) BY
(RWO "rnexp-int" 0 THEN Auto))
THEN (Assert r0 < r(2)\^{}2 BY
(RWO "-1" 0 THEN Auto))
THEN (RWW "rnexp-rdiv< -2" 0 THENA Auto)
THEN nRMul \mkleeneopen{}r(4)\mkleeneclose{} 0\mcdot{}
THEN Auto)
Home
Index