Step
*
2
of Lemma
ip-circle-circle-lemma3
1. rv : InnerProductSpace
2. a : Point(rv)
3. b : Point(rv)
4. c : {c:Point(rv)| a # c}
5. d : Point(rv)
6. [p] : {p:Point(rv)| ab=ap ∧ (||c - p|| ≤ ||c - d||)}
7. [q] : {q:Point(rv)| cd=cq ∧ (||a - q|| ≤ ||a - b||)}
8. r0 < ||c - a||
9. u : Point(rv)
10. v : Point(rv)
11. ||u|| = ||a - b||
12. ||u - c - a|| = ||c - d||
13. ||v|| = ||a - b||
14. ||v - c - a|| = ||c - d||
15. ((||a - b||^2 - ||c - d||^2) + ||c - a||^2^2 < (r(4) * ||c - a||^2 * ||a - b||^2))
⇒ u # v
⊢ ∃u,v:{p:Point(rv)| ab=ap ∧ cd=cp} . (((||a - q|| < ||a - b||) ∧ (||c - p|| < ||c - d||))
⇒ u # v)
BY
{ (All (RepUR ``ip-congruent``)
THEN (Assert ∀x,y,z:Point(rv). (||x - y|| = ||x - z||
⇐⇒ ||z - x|| = ||x - y||) BY
Auto)
THEN (Assert u + a ∈ {p:Point(rv)| (||a - b|| = ||a - p||) ∧ (||c - d|| = ||c - p||)} BY
(MemTypeCD
THEN (((RWO "-1" 0 THENA Auto)
THEN (RWO "-5< -6<" 0 THENA Auto)
THEN D 0
THEN (BLemma `rv-norm_functionality` THENA Auto)
THEN RealVecEqual
THEN Auto)
ORELSE Auto
)
))
THEN (Assert v + a ∈ {p:Point(rv)| (||a - b|| = ||a - p||) ∧ (||c - d|| = ||c - p||)} BY
(MemTypeCD
THEN (((RWO "-2" 0 THENA Auto)
THEN (RWO "-5< -4<" 0 THENA Auto)
THEN D 0
THEN (BLemma `rv-norm_functionality` THENA Auto)
THEN RealVecEqual
THEN Auto)
ORELSE Auto
)
))
THEN (InstConcl [⌜u + a⌝;⌜v + a⌝]⋅ THENA Auto)) }
1
1. rv : InnerProductSpace
2. a : Point(rv)
3. b : Point(rv)
4. c : {c:Point(rv)| a # c}
5. d : Point(rv)
6. [p] : {p:Point(rv)| (||a - b|| = ||a - p||) ∧ (||c - p|| ≤ ||c - d||)}
7. [q] : {q:Point(rv)| (||c - d|| = ||c - q||) ∧ (||a - q|| ≤ ||a - b||)}
8. r0 < ||c - a||
9. u : Point(rv)
10. v : Point(rv)
11. ||u|| = ||a - b||
12. ||u - c - a|| = ||c - d||
13. ||v|| = ||a - b||
14. ||v - c - a|| = ||c - d||
15. ((||a - b||^2 - ||c - d||^2) + ||c - a||^2^2 < (r(4) * ||c - a||^2 * ||a - b||^2))
⇒ u # v
16. ∀x,y,z:Point(rv). (||x - y|| = ||x - z||
⇐⇒ ||z - x|| = ||x - y||)
17. u + a ∈ {p:Point(rv)| (||a - b|| = ||a - p||) ∧ (||c - d|| = ||c - p||)}
18. v + a ∈ {p:Point(rv)| (||a - b|| = ||a - p||) ∧ (||c - d|| = ||c - p||)}
⊢ ((||a - q|| < ||a - b||) ∧ (||c - p|| < ||c - d||))
⇒ u + a # v + a
Latex:
Latex:
1. rv : InnerProductSpace
2. a : Point(rv)
3. b : Point(rv)
4. c : \{c:Point(rv)| a \# c\}
5. d : Point(rv)
6. [p] : \{p:Point(rv)| ab=ap \mwedge{} (||c - p|| \mleq{} ||c - d||)\}
7. [q] : \{q:Point(rv)| cd=cq \mwedge{} (||a - q|| \mleq{} ||a - b||)\}
8. r0 < ||c - a||
9. u : Point(rv)
10. v : Point(rv)
11. ||u|| = ||a - b||
12. ||u - c - a|| = ||c - d||
13. ||v|| = ||a - b||
14. ||v - c - a|| = ||c - d||
15. ((||a - b||\^{}2 - ||c - d||\^{}2) + ||c - a||\^{}2\^{}2 < (r(4) * ||c - a||\^{}2 * ||a - b||\^{}2)) {}\mRightarrow{} u \# v
\mvdash{} \mexists{}u,v:\{p:Point(rv)| ab=ap \mwedge{} cd=cp\} . (((||a - q|| < ||a - b||) \mwedge{} (||c - p|| < ||c - d||)) {}\mRightarrow{} u \# v)
By
Latex:
(All (RepUR ``ip-congruent``)
THEN (Assert \mforall{}x,y,z:Point(rv). (||x - y|| = ||x - z|| \mLeftarrow{}{}\mRightarrow{} ||z - x|| = ||x - y||) BY
Auto)
THEN (Assert u + a \mmember{} \{p:Point(rv)| (||a - b|| = ||a - p||) \mwedge{} (||c - d|| = ||c - p||)\} BY
(MemTypeCD
THEN (((RWO "-1" 0 THENA Auto)
THEN (RWO "-5< -6<" 0 THENA Auto)
THEN D 0
THEN (BLemma `rv-norm\_functionality` THENA Auto)
THEN RealVecEqual
THEN Auto)
ORELSE Auto
)
))
THEN (Assert v + a \mmember{} \{p:Point(rv)| (||a - b|| = ||a - p||) \mwedge{} (||c - d|| = ||c - p||)\} BY
(MemTypeCD
THEN (((RWO "-2" 0 THENA Auto)
THEN (RWO "-5< -4<" 0 THENA Auto)
THEN D 0
THEN (BLemma `rv-norm\_functionality` THENA Auto)
THEN RealVecEqual
THEN Auto)
ORELSE Auto
)
))
THEN (InstConcl [\mkleeneopen{}u + a\mkleeneclose{};\mkleeneopen{}v + a\mkleeneclose{}]\mcdot{} THENA Auto))
Home
Index