Nuprl Definition : path-comp-rel

path-comp-rel(X;f;g;h) ==
  (∀t:{x:ℝx ∈ [r0, (r1/r(2))]} h@t ≡ f@r(2) t) ∧ (∀t:{x:ℝx ∈ [(r1/r(2)), r1]} h@t ≡ g@(r(2) t) r1)



Definitions occuring in Statement :  path-at: p@t ss-eq: x ≡ y rccint: [l, u] i-member: r ∈ I rdiv: (x/y) rsub: y rmul: b int-to-real: r(n) real: all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions occuring in definition :  and: P ∧ Q all: x:A. B[x] set: {x:A| B[x]}  real: i-member: r ∈ I rccint: [l, u] rdiv: (x/y) ss-eq: x ≡ y path-at: p@t rsub: y rmul: b int-to-real: r(n) natural_number: $n
FDL editor aliases :  path-comp-rel

Latex:
path-comp-rel(X;f;g;h)  ==
    (\mforall{}t:\{x:\mBbbR{}|  x  \mmember{}  [r0,  (r1/r(2))]\}  .  h@t  \mequiv{}  f@r(2)  *  t)
    \mwedge{}  (\mforall{}t:\{x:\mBbbR{}|  x  \mmember{}  [(r1/r(2)),  r1]\}  .  h@t  \mequiv{}  g@(r(2)  *  t)  -  r1)



Date html generated: 2020_05_20-PM-01_20_40
Last ObjectModification: 2018_06_29-PM-05_47_43

Theory : intuitionistic!topology


Home Index