Definition: ss-homeo
ss-homeo(X;Y) ==  ∃f:Point(X ⟶ Y). ∃g:Point(Y ⟶ X). ((∀x:Point(X). g(f(x)) ≡ x) ∧ (∀y:Point(Y). f(g(y)) ≡ y))

Lemma: ss-homeo_wf
[X,Y:SeparationSpace].  (ss-homeo(X;Y) ∈ ℙ)

Lemma: ss-homeo_weakening
[X,Y:SeparationSpace].  ss-homeo(X;Y) supposing Y ∈ SeparationSpace

Lemma: ss-homeo_inversion
[X,Y:SeparationSpace].  (ss-homeo(X;Y)  ss-homeo(Y;X))

Lemma: ss-homeo_transitivity
[X,Y,Z:SeparationSpace].  (ss-homeo(X;Y)  ss-homeo(Y;Z)  ss-homeo(X;Z))

Lemma: ss-fun-fun
[X,Y,Z:SeparationSpace].  ss-homeo(X ⟶ Y ⟶ Z;X × Y ⟶ Z)

Lemma: ss-prod-prod
[X,Y,Z:SeparationSpace].  ss-homeo(X × Y × Z;X × Y × Z)

Lemma: unit-ss-eq
[t,t':{t:ℝt ∈ [r0, r1]} ].  uiff(t t';t ≡ t')

Definition: path-ss
Path(X) ==  𝕀 ⟶ X

Lemma: path-ss_wf
[X:SeparationSpace]. (Path(X) ∈ SeparationSpace)

Lemma: path-ss-point
[X:Top]
  (Point(Path(X)) {f:{x:ℝ(r0 ≤ x) ∧ (x ≤ r1)}  ⟶ Point(X)| ∀t,t':{x:ℝ(r0 ≤ x) ∧ (x ≤ r1)} .  (t ≡ t'  t ≡ t\000C')} )

Definition: path-at
p@t ==  t

Lemma: path-at_wf
[X:SeparationSpace]. ∀[p:Point(Path(X))]. ∀[t:{t:ℝt ∈ [r0, r1]} ].  (p@t ∈ Point(X))

Lemma: path-at_functionality
[X:SeparationSpace]. ∀[p:Point(Path(X))]. ∀[t,t':{t:ℝt ∈ [r0, r1]} ].  p@t ≡ p@t' supposing t'

Lemma: path-at_functionality2
[X:SeparationSpace]. ∀[p:Point(Path(X))]. ∀[t,t':{t:ℝt ∈ [r0, r1]} ].  p@t ≡ p@t' supposing t ≡ t'

Definition: ss-free-homotopic
ss-free-homotopic(X;a;b) ==  ∃p:Point(Path(X)). (p@r0 ≡ a ∧ p@r1 ≡ b)

Lemma: ss-free-homotopic_wf
[X:SeparationSpace]. ∀[a,b:Point(X)].  (ss-free-homotopic(X;a;b) ∈ ℙ)

Lemma: ss-free-homotopic_weakening
X:SeparationSpace. ∀a,b:Point(X).  ss-free-homotopic(X;a;b) supposing a ≡ b

Lemma: ss-free-homotopic_inversion
X:SeparationSpace. ∀a,b:Point(X).  (ss-free-homotopic(X;a;b)  ss-free-homotopic(X;b;a))

Definition: ss-homotopic
ss-homotopic(X;x0;x1;a;b) ==
  ∃p:Point(Path(Path(X))). (p@r0 ≡ a ∧ p@r1 ≡ b ∧ (∀t:{t:ℝt ∈ [r0, r1]} (p@t@r0 ≡ x0 ∧ p@t@r1 ≡ x1)))

Lemma: ss-homotopic_wf
[X:SeparationSpace]. ∀[x0,x1:Point(X)]. ∀[a,b:Point(Path(X))].  (ss-homotopic(X;x0;x1;a;b) ∈ ℙ)

Lemma: ss-homotopic_weakening
X:SeparationSpace
  ∀[x0,x1:Point(X)].  ∀a,b:Point(Path(X)).  (ss-homotopic(X;x0;x1;a;b)) supposing (a ≡ and b@r0 ≡ x0 and b@r1 ≡ x1)

Lemma: ss-homotopic_inversion
X:SeparationSpace. ∀[x0,x1:Point(X)].  ∀a,b:Point(Path(X)).  (ss-homotopic(X;x0;x1;a;b)  ss-homotopic(X;x0;x1;b;a))

Definition: path-comp-rel
path-comp-rel(X;f;g;h) ==
  (∀t:{x:ℝx ∈ [r0, (r1/r(2))]} h@t ≡ f@r(2) t) ∧ (∀t:{x:ℝx ∈ [(r1/r(2)), r1]} h@t ≡ g@(r(2) t) r1)

Lemma: path-comp-rel_wf
[X:SeparationSpace]. ∀[f,g,h:Point(Path(X))].  (path-comp-rel(X;f;g;h) ∈ ℙ)

Definition: path-comp-property
path-comp-property(X) ==  ∀f,g:Point(Path(X)).  (f@r1 ≡ g@r0  (∃h:Point(Path(X)). path-comp-rel(X;f;g;h)))

Lemma: path-comp-property_wf
[X:SeparationSpace]. (path-comp-property(X) ∈ ℙ)

Lemma: path-comp-property_functionality
[X,Y:SeparationSpace].  (ss-homeo(X;Y)  (path-comp-property(X) ⇐⇒ path-comp-property(Y)))

Lemma: path-comp-for-reals
path-comp-property(ℝ)

Lemma: path-comp-prod
[A,B:SeparationSpace].  (path-comp-property(A)  path-comp-property(B)  path-comp-property(A × B))

Lemma: path-in-union
[A,B:SeparationSpace].
  ∀f:Point(Path(A B))
    (((∀x:{x:ℝ(r0 ≤ x) ∧ (x ≤ r1)} (↑isl(f@x))) ∧ x.outl(f x) ∈ Point(Path(A))))
    ∨ ((∀x:{x:ℝ(r0 ≤ x) ∧ (x ≤ r1)} (↑isr(f@x))) ∧ x.outr(f x) ∈ Point(Path(B)))))

Lemma: path-comp-union
[A,B:SeparationSpace].  (path-comp-property(A)  path-comp-property(B)  path-comp-property(A B))

Lemma: path-comp-fun
[T:Type]. ∀[B:SeparationSpace].  (path-comp-property(B)  path-comp-property(T ⟶ B))

Lemma: path-comp-set
[A:SeparationSpace]. ∀[P:Point(A) ⟶ ℙ].
  ((∀a:Point(A). Stable{P[a]})
   (∀a,b:Point(A).  (a ≡  P[b]  P[a]))
   path-comp-property(A)
   path-comp-property({a:A P[a]}))

Definition: ss-basic
ss-basic(X) ==  (Point(X ⟶ ℝ) × ℝList

Lemma: ss-basic_wf
[X:SeparationSpace]. (ss-basic(X) ∈ Type)

Definition: ss-mem-basic
x ∈ ==  (∀p∈B.let f,r in f(x) < r)

Lemma: ss-mem-basic_wf
[X:SeparationSpace]. ∀[B:ss-basic(X)]. ∀[x:Point(X)].  (x ∈ B ∈ ℙ)

Lemma: sq_stable__ss-mem-basic
[X:SeparationSpace]. ∀B:ss-basic(X). ∀x:Point(X).  SqStable(x ∈ B)

Definition: ss-open
Open(X) ==  ss-basic(X) ⟶ ℙ

Lemma: ss-open_wf
[X:SeparationSpace]. (Open(X) ∈ 𝕌')

Definition: ss-mem-open
x ∈ ==  ∃B:ss-basic(X). ((O B) ∧ x ∈ B)

Lemma: ss-mem-open_wf
[X:SeparationSpace]. ∀[O:Open(X)]. ∀[x:Point(X)].  (x ∈ O ∈ ℙ)

Definition: ss-empty
ss-empty() ==  λB.False

Lemma: ss-empty_wf
[X:SeparationSpace]. (ss-empty() ∈ Open(X))

Lemma: ss-mem-empty
[X:SeparationSpace]. ∀[x:Point(X)].  uiff(x ∈ ss-empty();False)

Definition: ss-basic-whole
ss-basic-whole() ==  [<ss-const(r0), r1>]

Lemma: ss-basic-whole_wf
[X:SeparationSpace]. (ss-basic-whole() ∈ ss-basic(X))

Definition: ss-basic-and
ss-basic-and(u;v) ==  v

Lemma: ss-basic-and_wf
[X:SeparationSpace]. ∀[u,v:ss-basic(X)].  (ss-basic-and(u;v) ∈ ss-basic(X))

Lemma: ss-mem-basic-and
[X:SeparationSpace]. ∀u,v:ss-basic(X). ∀x:Point(X).  uiff(x ∈ ss-basic-and(u;v);x ∈ u ∧ x ∈ v)

Lemma: ss-mem-basic-whole
X:SeparationSpace. ∀x:Point(X).  uiff(x ∈ ss-basic-whole();True)

Definition: ss-whole
ss-whole(X) ==  λB.(B ss-basic-whole() ∈ ss-basic(X))

Lemma: ss-whole_wf
[X:SeparationSpace]. (ss-whole(X) ∈ Open(X))

Lemma: ss-mem-whole
X:SeparationSpace. ∀x:Point(X).  uiff(x ∈ ss-whole(X);True)

Definition: ss-open-and
A ⋂ ==  λz.∃u,v:ss-basic(X). ((A u) ∧ (B v) ∧ (z ss-basic-and(u;v) ∈ ss-basic(X)))

Lemma: ss-open-and_wf
[X:SeparationSpace]. ∀[A,B:Open(X)].  (A ⋂ B ∈ Open(X))

Lemma: ss-mem-open-and
[X:SeparationSpace]. ∀A,B:Open(X). ∀x:Point(X).  (x ∈ A ⋂ ⇐⇒ x ∈ A ∧ x ∈ B)

Definition: ss-open-or
x:T.F[x] ==  λB.∃x:T. (F[x] B)

Lemma: ss-open-or_wf
[X:SeparationSpace]. ∀[T:Type]. ∀[F:T ⟶ Open(X)].  (⋃x:T.F[x] ∈ Open(X))

Lemma: ss-mem-open-or
[X:SeparationSpace]. ∀T:Type. ∀F:T ⟶ Open(X). ∀x:Point(X).  (x ∈ ⋃t:T.F[t] ⇐⇒ ∃t:T. x ∈ F[t])

Lemma: path-end-mem-basic
X:SeparationSpace. ∀f:Point(Path(X)). ∀B:ss-basic(X).
  (f@r1 ∈  (∃z:{z:ℝz ∈ [r0, r1)} . ∀t:{t:ℝt ∈ [z, r1]} f@t ∈ B))

Lemma: path-end-mem-open
X:SeparationSpace. ∀f:Point(Path(X)). ∀O:Open(X).
  (f@r1 ∈  (∃z:{z:ℝz ∈ [r0, r1)} . ∀t:{t:ℝt ∈ [z, r1]} f@t ∈ O))



Home Index