Nuprl Lemma : path-at_wf
∀[X:SeparationSpace]. ∀[p:Point(Path(X))]. ∀[t:{t:ℝ| t ∈ [r0, r1]} ].  (p@t ∈ Point(X))
Proof
Definitions occuring in Statement : 
path-at: p@t
, 
path-ss: Path(X)
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
path-at: p@t
, 
and: P ∧ Q
, 
prop: ℙ
, 
cand: A c∧ B
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
path-ss-point, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
set_wf, 
i-member_wf, 
rccint_wf, 
ss-point_wf, 
path-ss_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
setEquality, 
productEquality, 
natural_numberEquality, 
because_Cache, 
productElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality
Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[p:Point(Path(X))].  \mforall{}[t:\{t:\mBbbR{}|  t  \mmember{}  [r0,  r1]\}  ].    (p@t  \mmember{}  Point(X))
Date html generated:
2020_05_20-PM-01_20_15
Last ObjectModification:
2018_06_29-PM-05_47_40
Theory : intuitionistic!topology
Home
Index