Nuprl Lemma : path-at_wf

[X:SeparationSpace]. ∀[p:Point(Path(X))]. ∀[t:{t:ℝt ∈ [r0, r1]} ].  (p@t ∈ Point(X))


Proof




Definitions occuring in Statement :  path-at: p@t path-ss: Path(X) ss-point: Point(ss) separation-space: SeparationSpace rccint: [l, u] i-member: r ∈ I int-to-real: r(n) real: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top path-at: p@t and: P ∧ Q prop: cand: c∧ B i-member: r ∈ I rccint: [l, u] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  path-ss-point real_wf rleq_wf int-to-real_wf set_wf i-member_wf rccint_wf ss-point_wf path-ss_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution extract_by_obid isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis setElimination rename sqequalRule applyEquality functionExtensionality hypothesisEquality setEquality productEquality natural_numberEquality because_Cache productElimination independent_pairFormation dependent_set_memberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaEquality

Latex:
\mforall{}[X:SeparationSpace].  \mforall{}[p:Point(Path(X))].  \mforall{}[t:\{t:\mBbbR{}|  t  \mmember{}  [r0,  r1]\}  ].    (p@t  \mmember{}  Point(X))



Date html generated: 2020_05_20-PM-01_20_15
Last ObjectModification: 2018_06_29-PM-05_47_40

Theory : intuitionistic!topology


Home Index