Nuprl Lemma : i-member_wf
∀[I:Interval]. ∀[x:ℝ].  (x ∈ I ∈ ℙ)
Proof
Definitions occuring in Statement : 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
i-member: r ∈ I
, 
interval: Interval
, 
prop: ℙ
, 
and: P ∧ Q
Lemmas referenced : 
rleq_wf, 
rless_wf, 
true_wf, 
real_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
productEquality, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[x:\mBbbR{}].    (x  \mmember{}  I  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-08_19_14
Last ObjectModification:
2015_12_27-PM-11_57_48
Theory : reals
Home
Index