Nuprl Lemma : rless_wf

[x,y:ℝ].  (x < y ∈ ℙ)


Proof




Definitions occuring in Statement :  rless: x < y real: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rless: x < y so_lambda: λ2x.t[x] real: so_apply: x[s]
Lemmas referenced :  sq_exists_wf nat_plus_wf less_than_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality addEquality applyEquality setElimination rename hypothesisEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[x,y:\mBbbR{}].    (x  <  y  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_03_09
Last ObjectModification: 2015_12_28-AM-00_34_47

Theory : reals


Home Index