Nuprl Lemma : sq_exists_wf
∀[A:Type]. ∀[B:A ⟶ ℙ].  (∃a:{A| B[a]} ∈ ℙ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
sq_exists: ∃x:{A| B[x]}
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq_exists: ∃x:{A| B[x]}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  \mBbbP{}].    (\mexists{}a:\{A|  B[a]\}  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_06_59
Last ObjectModification:
2016_01_06-PM-05_28_48
Theory : core_2
Home
Index