Nuprl Lemma : sq_exists_wf

[A:Type]. ∀[B:A ⟶ ℙ].  (∃a:{A| B[a]} ∈ ℙ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s] sq_exists: x:{A| B[x]} member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq_exists: x:{A| B[x]} so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop:
Lemmas referenced :  set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis universeEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity isect_memberEquality because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  \mBbbP{}].    (\mexists{}a:\{A|  B[a]\}  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_06_59
Last ObjectModification: 2016_01_06-PM-05_28_48

Theory : core_2


Home Index