Nuprl Lemma : real_wf

ℝ ∈ Type


Proof




Definitions occuring in Statement :  real: member: t ∈ T universe: Type
Definitions unfolded in proof :  real: member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  nat_plus_wf regular-int-seq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep setEquality functionEquality cut lemma_by_obid hypothesis intEquality sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality

Latex:
\mBbbR{}  \mmember{}  Type



Date html generated: 2016_05_18-AM-06_46_50
Last ObjectModification: 2015_12_28-AM-00_24_49

Theory : reals


Home Index