Nuprl Lemma : real_wf
ℝ ∈ Type
Proof
Definitions occuring in Statement : 
real: ℝ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
real: ℝ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
nat_plus_wf, 
regular-int-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
setEquality, 
functionEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
intEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality
Latex:
\mBbbR{}  \mmember{}  Type
Date html generated:
2016_05_18-AM-06_46_50
Last ObjectModification:
2015_12_28-AM-00_24_49
Theory : reals
Home
Index